Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation

Published: 01 June 2016 Publication History

Abstract

The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.

References

[1]
E. Borgonovo, G.E. Apostolakis, S. Tarantola, A. Saltelli, Comparison of global sensitivity analysis techniques and importance measures in PSA, Reliab. Eng. Syst. Saf., 79 (2003) 175-185.
[2]
R.L. Iman, S.C. Hora, A robust measure of uncertainty importance for use in fault tree system analysis, Risk Anal., 10 (1990) 401-406.
[3]
I.M. Sobol', Sensitivity estimates for nonlinear mathematical models, Math. Model. Comput. Exp., 1 (1993) 407-414.
[4]
T. Homma, A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliab. Eng. Syst. Saf., 52 (1996) 1-17.
[5]
G.E.B. Archer, A. Saltelli, I.M. Sobol', Sensitivity measures, ANOVA-like techniques and the use of bootstrap, J. Stat. Comput. Simul., 58 (1997) 99-120.
[6]
I.M. Sobol', Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul., 55 (2001) 271-280.
[7]
H.M. Wagner, Global sensitivity analysis, Oper. Res., 43 (1995) 948-969.
[8]
H. Rabitz, O.F. Alis, General foundations of high-dimensional model representations, J. Math. Chem., 25 (1999) 197-233.
[9]
H. Rabitz, O.F. Alis, J. Shorter, K. Shim, Efficient input-output model representations, Comput. Phys. Commun., 117 (1999) 11-20.
[10]
A. Saltelli, Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index, Comput. Phys. Commun., 181 (2010) 259-270.
[11]
B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Syst. Saf., 93 (2008) 964-979.
[12]
T. Crestaux, O. Le Maître, J.-M. Martinez, Polynomial chaos expansion for sensitivity analysis, Reliab. Eng. Syst. Saf., 94 (2009) 1161-1172.
[13]
G. Blatman, B. Sudret, Efficient computation of global sensitivity indices using sparse polynomial chaos expansions, Reliab. Eng. Syst. Saf., 95 (2010) 1216-1229.
[14]
J. Foo, G.E. Karniadakis, Multi-element probabilistic collocation method in high dimensions, J. Comput. Phys., 229 (2010) 1536-1557.
[15]
X. Yang, M. Choi, G. Lin, G.E. Karniadakis, Adaptive ANOVA decomposition of stochastic incompressible and compressible flows, J. Comput. Phys., 231 (2012) 1587-1614.
[16]
C. Xu, G. Gertner, Extending a global sensitivity analysis technique to models with correlated parameters, Comput. Stat. Data Anal., 51 (2007) 5579-5590.
[17]
C. Xu, G. Gertner, Uncertainty and sensitivity analysis for models with correlated parameters, Reliab. Eng. Syst. Saf., 93 (2008) 1563-1573.
[18]
E. Borgonovo, A new uncertainty importance measure, Reliab. Eng. Syst. Saf., 92 (2007) 771-784.
[19]
J.Y. Caniou, B. Sudret, Distribution-based global sensitivity analysis in case of correlated input parameters using polynomial chaos expansions, in: ICASP2011, 2011.
[20]
E. Borgonovo, S. Tarantola, Advances in sensitivity analysis, Reliab. Eng. Syst. Saf., 107 (2012) 1-2.
[21]
E. Borgonovo, E. Plischke, Sensitivity analysis: a review of recent advances, Eur. J. Oper. Res., 248 (2016) 869-887.
[22]
G. Li, C. Rosenthal, H. Rabitz, High dimensional model representations, J. Phys. Chem. A, 105 (2001).
[23]
X. Wang, On the approximation error in high dimensional model representation, in: Simulation Conference, 2008, pp. 453-462.
[24]
X. Ma, N. Zabaras, An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations, J. Comput. Phys., 229 (2010) 3884-3915.
[25]
Z. Gao, J.S. Hesthaven, On ANOVA expansions and strategies for choosing the anchor point, Appl. Math. Comput., 217 (2010) 3274-3285.
[26]
Z. Zhang, M. Choi, G.E. Karniadakis, Spectral and High Order Methods for Partial Differential Equations, Springer, Berlin, Heidelberg, 2011. http://www.springerlink.com/index/10.1007/978-3-642-15337-2
[27]
Z. Zhang, M. Choi, G.E. Karniadakis, Error estimates for the ANOVA method with Polynomial Chaos interpolation: tensor product functions, SIAM J. Sci. Comput., 34 (2012) A1165-A1186.
[28]
K. Tang, P.M. Congedo, R. Abgrall, Sensitivity analysis using anchored ANOVA expansion and high-order moments computation, Int. J. Numer. Methods Eng., 102 (2015) 1554-1584.
[29]
D. Xiu, G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24 (2002) 619-644.
[30]
D. Xiu, G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys., 187 (2003) 137-167.
[31]
S. Rahman, A polynomial dimensional decomposition for stochastic computing, Int. J. Numer. Methods Eng., 76 (2008) 2091-2116.
[32]
S. Rahman, Global sensitivity analysis by polynomial dimensional decomposition, Reliab. Eng. Syst. Saf., 96 (2011) 825-837.
[33]
S. Rahman, V. Yadav, Orthogonal polynomial expansions for solving random eigenvalue problems, Int. J. Uncertain. Quantificat., 1 (2011) 163-187.
[34]
V. Yadav, S. Rahman, Adaptive-sparse polynomial dimensional decomposition methods for high-dimensional stochastic computing, Comput. Methods Appl. Mech. Eng., 274 (2014) 56-83.
[35]
S. Rahman, X. Ren, Novel computational methods for high-dimensional stochastic sensitivity analysis, Int. J. Numer. Methods Eng., 98 (2014) 881-916.
[36]
S.-K. Choi, R.V. Grandhi, R.A. Canfield, C.L. Pettit, Polynomial chaos expansion with Latin hypercube sampling for estimating response variability, AIAA J., 42 (2004) 1191-1198.
[37]
O. Le Maître, M.T. Reagan, H.N. Najm, R.G. Ghanem, O.M. Knio, A stochastic projection method for fluid flow II. Random process, J. Comput. Phys., 181 (2002) 9-44.
[38]
H.G. Matthies, A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Eng., 194 (2005) 1295-1331.
[39]
P.S. Beran, C.L. Pettit, D.R. Millman, Uncertainty quantification of limit-cycle oscillations, J. Comput. Phys., 217 (2006) 217-247.
[40]
G. Blatman, B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probab. Eng. Mech., 25 (2010) 183-197.
[41]
I. Sobol', S. Tarantola, D. Gatelli, S. Kucherenko, W. Mauntz, Estimating the approximation error when fixing unessential factors in global sensitivity analysis, Reliab. Eng. Syst. Saf., 92 (2007) 957-960.
[42]
I.M. Sobol', E.E. Myshetskaya, Monte Carlo estimators for small sensitivity indices, Monte Carlo Methods Appl., 13 (2008).
[43]
I. Sobol', S. Kucherenko, A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices, Comput. Phys. Commun., 181 (2010) 1212-1217.
[44]
O. Le Maître, O.M. Knio, Spectral Methods for Uncertainty Quantification, Springer, 2010.
[45]
I.M. Sobol, Uniformly distributed sequences with an additional uniform property, USSR Comput. Math. Math. Phys., 16 (1976) 236-242.
[46]
G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, J. Comput. Phys., 230 (2011) 2345-2367.
[47]
R.E. Caflisch, W. Morokoff, A.B. Owen, Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension, J. Comput. Finance, 1 (1997) 26-47.
[48]
A.B. Owen, The dimension distribution and quadrature test functions, Stat. Sin., 13 (2003) 1-17.
[49]
I.V. Tetko, D.J. Livingstone, A.I. Luik, Neural network studies. 1. Comparison of overfitting and overtraining, J. Chem. Inf. Comput. Sci., 35 (1995) 826-833.
[50]
T. Ishigami, T. Homma, An importance quantification technique in uncertainty analysis for computer models, in: First International Symposium on Uncertainty Modeling and Analysis, 1990, pp. 398-403.
[51]
G. Li, H. Rabitz, P.E. Yelvington, O.O. Oluwole, F. Bacon, C.E. Kolb, J. Schoendorf, Global sensitivity analysis for systems with independent and/or correlated inputs, J. Phys. Chem. A, 114 (2010) 6022-6032.
[52]
E. Plischke, E. Borgonovo, C.L. Smith, Global sensitivity measures from given data, Eur. J. Oper. Res., 226 (2013) 536-550.
[53]
E. Borgonovo, S. Tarantola, E. Plischke, M.D. Morris, Transformations and invariance in the sensitivity analysis of computer experiments, J. R. Stat. Soc., Ser. B, Stat. Methodol., 76 (2014) 925-947.
[54]
J. Tryoen, P.M. Congedo, R. Abgrall, N. Villedieu, T.E. Magin, Bayesian-based method with metamodels for rebuilding freestream conditions in atmospheric entry flows, AIAA J., 52 (2014) 2190-2197.
[55]
P. Barbante, Accurate and efficient modelling of high temperature non-equilibrium air flows, von Karman Institute, Rhode-Saint-Genèse, Belgium, 2001.
[56]
M.J. Wright, D. Bose, G.E. Palmer, E. Levin, Recommended collision integrals for transport property computations part 1: air species, AIAA J., 43 (2005) 2558-2564.
[57]
C. Park, R. Jaffe, H. Partridge, Chemical-kinetic parameters of hyperbolic Earth entry, J. Thermophys. Heat Transf., 15 (2001) 76-90.
[58]
F. Coquel, M. Liou, Hybrid upwind splitting scheme by a field-by-field decomposition, 1995.
[59]
B.V. Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, J. Comput. Phys., 32 (1979) 101-136.
[60]
S. Osher, F. Solomon, Upwind difference schemes for hyperbolic systems of conservation laws, Math. Comput., 38 (1982) 339-374.
[61]
J. Thoemel, J. Muylaert, F. Ratti, J. Gavira, In-flight testing of critical technologies and experimentation of aerothermodynamic phenomena, in: Proceedings of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, American Institute of Aeronautics and Astronautics, Bremen, Germany, 2009.
[62]
N. Villedieu, F. Panerai, O. Chazot, T. Magin, Uncertainty quantification for gas-surface interaction in plasmatron, in: Specialists Meeting on Catalytic Gas Surface Interactions, 2012.
[63]
D. Bose, M. Wright, T. Gokçen, Uncertainty and sensitivity analysis of thermochemical modeling for titan atmospheric entry, in: 37th AIAA Thermophysics Conference, Portland, Oregon, 2004.
[64]
T. Bedford, Sensitivity indices for (tree-)dependent variables, in: Proceedings of the Second International Symposium on Sensitivity Analysis of Model Output, 1998, pp. 17-20.
[65]
D. Sivia, J. Skilling, Data Analysis: A Bayesian Tutorial, Oxford University Press, 2006.
[66]
A. Saltelli, S. Tarantola, On the relative importance of input factors in mathematical models, J. Am. Stat. Assoc., 97 (2002) 702-709.
[67]
J. Oakley, A. O'Hagan, Probabilistic sensitivity analysis of complex models: a Bayesian approach, J. R. Stat. Soc., Ser. B, Stat. Methodol., 66 (2004) 751-769.
[68]
S. Kucherenko, S. Tarantola, P. Annoni, Estimation of global sensitivity indices for models with dependent variables, Comput. Phys. Commun., 183 (2012) 937-946.

Cited By

View all
  • (2023)An Adaptive ANOVA Stochastic Galerkin Method for Partial Differential Equations with High-dimensional Random InputsJournal of Scientific Computing10.1007/s10915-023-02417-w98:1Online publication date: 15-Dec-2023
  • (2023)A general multi-fidelity metamodeling framework for models with various output correlationStructural and Multidisciplinary Optimization10.1007/s00158-023-03537-566:5Online publication date: 13-Apr-2023
  • (2023)A novel data-driven sparse polynomial chaos expansion for high-dimensional problems based on active subspace and sparse Bayesian learningStructural and Multidisciplinary Optimization10.1007/s00158-022-03475-866:1Online publication date: 14-Jan-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 314, Issue C
June 2016
911 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 01 June 2016

Author Tags

  1. Adaptive sparse polynomial surrogate model
  2. Analysis of Variance (ANOVA)
  3. Atmospheric reentry
  4. Global sensitivity analysis
  5. Non-intrusive approach
  6. Polynomial dimensional decomposition (PDD)
  7. Regression approach
  8. Uncertainty quantification

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2023)An Adaptive ANOVA Stochastic Galerkin Method for Partial Differential Equations with High-dimensional Random InputsJournal of Scientific Computing10.1007/s10915-023-02417-w98:1Online publication date: 15-Dec-2023
  • (2023)A general multi-fidelity metamodeling framework for models with various output correlationStructural and Multidisciplinary Optimization10.1007/s00158-023-03537-566:5Online publication date: 13-Apr-2023
  • (2023)A novel data-driven sparse polynomial chaos expansion for high-dimensional problems based on active subspace and sparse Bayesian learningStructural and Multidisciplinary Optimization10.1007/s00158-022-03475-866:1Online publication date: 14-Jan-2023
  • (2022)An adaptive sparse polynomial dimensional decomposition based on Bayesian compressive sensing and cross-entropyStructural and Multidisciplinary Optimization10.1007/s00158-021-03120-w65:1Online publication date: 5-Jan-2022
  • (2020)Surrogate-assisted global sensitivity analysis: an overviewStructural and Multidisciplinary Optimization10.1007/s00158-019-02413-561:3(1187-1213)Online publication date: 17-Jan-2020
  • (2018)A SVM-based Sensitivity Analysis Approach for Data-Driven Modeling of Ship Motion2018 IEEE International Conference on Mechatronics and Automation (ICMA)10.1109/ICMA.2018.8484531(803-808)Online publication date: 5-Aug-2018
  • (2016)A hybrid anchored-ANOVA - POD/Kriging method for uncertainty quantification in unsteady high-fidelity CFD simulationsJournal of Computational Physics10.1016/j.jcp.2016.07.036324:C(137-173)Online publication date: 1-Nov-2016

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media