Nothing Special   »   [go: up one dir, main page]

skip to main content
article

The numerical prediction of planar viscoelastic contraction flows using the pom-pom model and higher-order finite volume schemes

Published: 01 January 2007 Publication History

Abstract

This study investigates the numerical solution of viscoelastic flows using two contrasting high-order finite volume schemes. We extend our earlier work for Poiseuille flow in a planar channel and the single equation form of the extended pom-pom (SXPP) model [M. Aboubacar, J.P. Aguayo, P.M. Phillips, T.N. Phillips, H.R. Tamaddon-Jahromi, B.A. Snigerev, M.F. Webster, Modelling pom-pom type models with high-order finite volume schemes, J. Non-Newtonian Fluid Mech. 126 (2005) 207-220], to determine steady-state solutions for planar 4:1 sharp contraction flows. The numerical techniques employed are time-stepping algorithms: one of hybrid finite element/volume type, the other of pure finite volume form. The pure finite volume scheme is a staggered-grid cell-centred scheme based on area-weighting and a semi-Lagrangian formulation. This may be implemented on structured or unstructured rectangular grids, utilising backtracking along the solution characteristics in time. For the hybrid scheme, we solve the momentum-continuity equations by a fractional-staged Taylor-Galerkin pressure-correction procedure and invoke a cell-vertex finite volume scheme for the constitutive law. A comparison of the two finite volume approaches is presented, concentrating upon the new features posed by the pom-pom class of models in this context of non-smooth flows. Here, the dominant feature of larger shear and extension in the entry zone influences both stress and stretch, so that larger stretch develops around the re-entrant corner zone as Weissenberg number increases, whilst correspondingly stress levels decline.

References

[1]
Aboubacar, M., Aguayo, J.P., Phillips, P.M., Phillips, T.N., Tamaddon-Jahromi, H.R., Snigerev, B.A. and Webster, M.F., Modelling pom-pom type models with high-order finite volume schemes. J. Non-Newtonian Fluid Mech. v126. 207-220.
[2]
Aboubacar, M., Matallah, H., Tamaddon-Jahromi, H.R. and Webster, M.F., Numerical prediction of extensional flows in contraction geometries: hybrid finite volume/element method. J. Non-Newtonian Fluid Mech. v104. 125-164.
[3]
Aboubacar, M., Matallah, H. and Webster, M.F., Highly elastic solutions for Oldroyd-B and Phan-Thien/Tanner fluids with a finite volume/element method: planar contraction flows. J. Non-Newtonian Fluid Mech. v103. 65-103.
[4]
Aboubacar, M., Phillips, T.N., Tamaddon-Jahromi, H.R., Snigerev, B.A. and Webster, M.F., High-order finite volume methods for viscoelastic flow problems. J. Comput. Phys. v199. 16-40.
[5]
Aboubacar, M. and Webster, M.F., A cell-vertex finite volume/element method on triangles for abrupt contraction viscoelastic flows. J. Non-Newtonian Fluid Mech. v98. 83-106.
[6]
Aguayo, J.P., Tamaddon-Jahromi, H.R. and Webster, M.F., Extensional response of the pom-pom model through planar contraction flows for branched polymer melts. J. Non-Newtonian Fluid Mech. v134. 105-126.
[7]
Alves, M.A., Oliveira, P.J. and Pinho, F.T., On the effect of contraction ratio in viscoelastic flow through abrupt contractions. J. Non-Newtonian Fluid Mech. v122. 117-130.
[8]
Alves, M.A., Pinho, F.T. and Oliveira, P.J., Effect of a high-resolution differencing scheme on finite-volume predictions of viscoelastic flows. J. Non-Newtonian Fluid Mech. v93. 287-314.
[9]
Bishko, G.B., Harlen, O.G., McLeish, T.C.B. and Nicholson, T.M., Numerical simulation of the transient flow of branched polymer melts through a planar contraction using the 'pom-pom' model. J. Non-Newtonian Fluid Mech. v82. 255-273.
[10]
Blackwell, R.J., McLeish, T.C.B. and Harlen, O.G., Molecular drag-strain coupling in branched polymer melts. J. Rheol. v44. 121-136.
[11]
Boger, D.V., Viscoelastic flows through contractions. Annu. Rev. Fluid Mech. v19. 157-182.
[12]
Carew, E.O.A., Townsend, P. and Webster, M.F., A Taylor-Petrov-Galerkin algorithm for viscoelastic flow. J. Non-Newtonian Fluid Mech. v50. 253-287.
[13]
Carew, E.O.A., Townsend, P. and Webster, M.F., Taylor-Galerkin algorithms for viscoelastic flow: application to a model problem. Numer. Meth. Part. Diff. Eqns. v10. 171-190.
[14]
Clemeur, N., Rutgers, R.P.G. and Debbaut, B., On the evaluation of some differential formulations for the pom-pom constitutive model. Rheol. Acta. v42. 217-231.
[15]
Clemeur, N., Rutgers, R.P.G. and Debbaut, B., Numerical simulation of abrupt contraction flows using double convected pom-pom model. J. Non-Newtonian Fluid Mech. v123. 105-120.
[16]
Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics. Oxford University Press, Oxford.
[17]
Evans, R.E. and Walters, K., Flow characteristics associated with abrupt changes in geometry in the case of highly elastic liquids. J. Non-Newtonian Fluid Mech. v20. 11-29.
[18]
Evans, R.E. and Walters, K., Further remarks on the lip-vortex mechanism of vortex enhancement in planar-contraction flows. J. Non-Newtonian Fluid Mech. v32. 95-105.
[19]
F. Beblida, I.J. Keshtiban, M.F. Webster, Stabilised computations for incompressible and mildly compressible viscoelastic flows, Available as CSR 1-2005, Computer Reports Series, University of Wales, Swansea.
[20]
O. Hassager, Working group on numerical techniques, in: Fifth International Workshop on Numerical Methods in Non-Newtonian Flows, Lake Arrowhead, USA, vol. 29, 1988, pp. 2-5.
[21]
Hubbard, M.E. and Roe, P.L., Multidimensional upwind fluctuation distribution schemes for scalar dependent problems. Int. J. Numer. Meth. Fluids. v33. 711-736.
[22]
Marchal, J.M. and Crochet, M.J., Hermitian finite elements for calculating viscoelastic flow. J. Non-Newtonian Fluid Mech. v20. 187-207.
[23]
Marchal, J.M. and Crochet, M.J., A new mixed finite element for calculating viscoelastic flow. J. Non-Newtonian Fluid Mech. v26. 77-114.
[24]
Marrucci, G., Dynamics of entanglements: a non-linear model consistent with the Cox-Merz rule. J. Non-Newtonian Fluid Mech. v62. 279-289.
[25]
McLeish, T.C.B. and Larson, R.G., Molecular constitutive equations for a class of branched polymers: The pom-pom polymer. J. Rheol. v42 i1. 81-110.
[26]
Van Meerveld, J., Note on thermodynamic consistency of the integral pom-pom model. J. Non-Newtonian Fluid Mech. v108. 291-299.
[27]
Owens, R.G. and Phillips, T.N., Computational Rheology. Imperial College Press, London.
[28]
Patankar, S.V., Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing, New York.
[29]
Phillips, T.N. and Williams, A.J., Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method. J. Non-Newtonian Fluid Mech. v87. 215-246.
[30]
Phillips, T.N. and Williams, A.J., Conservative semi-Lagrangian finite volume schemes. Numer. Meth. Part. Diff. Eqns. v17. 403-425.
[31]
Phillips, T.N. and Williams, A.J., Comparison of creeping and inertial flow of an Oldroyd B fluid through planar and axisymmetric contractions. J. Non-Newtonian Fluid Mech. v108. 25-47.
[32]
Purnode, B. and Crochet, M.J., Flows of polymer solutions through contractions. part I: flows of polyacrylamide solutions through planar contractions. J. Non-Newtonian Fluid Mech. v65. 269-289.
[33]
Sirakov, I., Ainser, A., Haouche, M. and Guillet, J., Three-dimensional numerical simulation of viscoelastic contraction flows using the pom-pom differential constitutive model. J. Non-Newtonian Fluid Mech. v126. 163-173.
[34]
Tanner, R.I. and Nasseri, S., Simple constitutive models for linear and branched polymers. J. Non-Newtonian Fluid Mech. v116. 1-17.
[35]
van Os, R.G.M. and Phillips, T.N., The prediction of complex flows of polymer melts using spectral elements. J. Non-Newtonian Fluid Mech. v122. 287-301.
[36]
Verbeeten, W.M.H., Peters, G.W.M. and Baaijens, F.T.P., Differential constitutive equations for polymer melts: the eXtended pom-pom model. J. Rheol. v45 i4. 823-843.
[37]
Verbeeten, W.M.H., Peters, G.W.M. and Baaijens, F.P.T., Viscoelastic analysis of complex polymer melt flows using the eXtended pom-pom model. J. Non-Newtonian Fluid Mech. v108. 301-326.
[38]
Verbeeten, W.M.H., Peters, G.W.M. and Baaijens, F.P.T., Numerical simulations of the planar contraction flow for a polyethylene melt using the XPP model. J. Non-Newtonian Fluid Mech. v117. 73-84.
[39]
Walters, K. and Webster, M.F., The distinctive CFD challenges of computational rheology. Int. J. Numer. Meth. Fluids. v43. 577-596.
[40]
Wapperom, P. and Webster, M.F., Simulation for viscoelastic flow by a finite volume/element method. Comput. Meth. Appl. Mech. Eng. v180. 281-304.
[41]
Webster, M.F., Tamaddon-Jahromi, H.R. and Aboubacar, M., Time-dependent algorithms for viscoelastic flow - finite element/volume schemes. Numer. Meth. Part. Diff. Eqns. v121. 272-296.
[42]
Webster, M.F., Matallah, H. and Sujatha, K.S., Sub-cell approximation for viscoelastic flows-filament stretching. J. Non-Newtonian Fluid Mech. v126. 187-205.
[43]
Xue, S.-C., Phan-Thien, N. and Tanner, R.I., Three dimensional numerical simulations of viscoelastic flows through planar contractions. J. Non-Newtonian Fluid Mech. v74. 195-245.
[44]
Yoo, J.Y. and Na, Y., A numerical study of the planar contraction flow of a viscoelastic fluid using the SIMPLER algorithm. J. Non-Newtonian Fluid Mech. v39. 89-106.

Cited By

View all
  • (2016)Numerical study for differential constitutive equations with polymer melts by using a hybrid finite-element/volume methodJournal of Computational and Applied Mathematics10.1016/j.cam.2016.06.007308:C(488-498)Online publication date: 15-Dec-2016

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 220, Issue 2
January, 2007
429 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 01 January 2007

Author Tags

  1. Abrupt contraction
  2. Hybrid finite element/volume
  3. Pom-pom model
  4. Pure finite volume
  5. Viscoelasticity

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2016)Numerical study for differential constitutive equations with polymer melts by using a hybrid finite-element/volume methodJournal of Computational and Applied Mathematics10.1016/j.cam.2016.06.007308:C(488-498)Online publication date: 15-Dec-2016

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media