Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Algorithms with large domination ratio

Published: 01 January 2004 Publication History

Abstract

Let P be an optimization problem, and let A be an approximation algorithm for P. The domination ratio domr(A, n) is the maximum real q such that the solution x(I) obtained by A for any instance I of P of size n is not worse than at least a fraction q of the feasible solutions of I. We describe a deterministic, polynomial-time algorithm with domination ratio 1 - o(1) for the partition problem, and a deterministic, polynomial-time algoritiun with domination ratio Ω(1) for the MaxCut problem and for some far-reaching extensions of it, including Max-r-Sat, for each fixed r. The techniques combine combinatorial and probabilistic methods with tools from harmonic analysis.

References

[1]
{1} N. Alon, Bipartite subgraphs, Combinatorica 16 (1996) 301-311.
[2]
{2} N. Alon, Voting paradoxes and digraphs realizations, Adv. in Appl. Math. 29 (2002) 126-135.
[3]
{3} N. Alon, B. Bollobás, M. Krivelevich, B. Sudakov, Maximum cuts and judicious partitions in graphs without short cycles, J. Combin. Theory Ser. B 88 (2003) 329-346.
[4]
{4} N. Alon, J.H. Spencer, The Probabilistic Method, 2nd Edition, Wiley, New York, 2000.
[5]
{5} D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, A. Zverovitch, Transformations of generalized ATSP into ATSP: experimental and theoretical study, Oper. Res. Lett. 41 (2003) 2581-2596.
[6]
{6} D. Berend, S.S. Skiena, Combinatorial dominance guarantees for heuristic algorithms, Manuscript, 2002.
[7]
{7} J. Bourgain, Walsh subspaces of lp product spaces, in: Séminaire d'analyse fonctionnelle, École Polytechnique, Centre de Mathématiques, 1979-80, pp. 41-49.
[8]
{8} C.S. Edwards, Some extremal properties of bipartite subgraphs, Canad. J. Math. 3 (1973) 475-485.
[9]
{9} C.S. Edwards, An improved lower bound for the number of edges in a largest bipartite subgraph, in: Proc. 2nd Czechoslovak Symposium on Graph Theory, Prague, 1975, pp. 167-181.
[10]
{10} P. Erdös, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945) 898-902.
[11]
{11} E. Friedgut, V. Rödl, Proof of a hypercontractive estimate via entropy, Israel J. Math. 125 (2001) 369-380.
[12]
{12} G. Grimmett, C. McDiarmid, On colouring random graphs, Math. Proc. Cambridge Philos. Soc. 77 (1975) 313-324.
[13]
{13} G. Gutin, A. Vainshtein, A. Yeo, Domination analysis of combinatorial optimization problems, Discrete Appl. Math. 29 (2003) 513-520.
[14]
{14} G. Gutin, A. Yeo, Polynomial approximation algorithms for the TSP and the QAP with a factorial domination number, Discrete Appl. Math. 119 (2002) 107-116.
[15]
{15} G. Gutin, A. Yeo, Anti-matroids, Oper. Res. Lett. 30 (2002) 97-99.
[16]
{16} G. Gutin, A. Yeo, A. Zverovitch, Exponential neighborhoods and domination analysis for the TSP, in: G. Gutin, A.P. Punnen (Eds.), The Traveling Salesman Problem and Its Variations, Kluwer, Dordrecht, 2002.
[17]
{17} D.S. Johnson, G. Gutin, L. McGeoch, A. Yeo, X. Zhang, A. Zverovitch, Experimental analysis of heuristics for ATSP, in: G. Gutin, A.P. Punnen (Eds.), The Traveling Salesman Problem and Its Variations, Kluwer, Dordrecht, 2002.
[18]
{18} J. Håstad, S. Venkatesh, On the advantage over a random assignment, in: Annual ACM Symposium on Theory of Computing, 2002, pp. 43-52.
[19]
{19} A.E. Koller, S.D. Noble, Domination analysis of greedy heuristics for the frequency assignment problem, Discrete Math., in press.
[20]
{20} S. Poljak, V. Rödl, J. Spencer, Tournament ranking with expected profit in polynomial time, SIAM J. Discrete Math. 1 (1988) 372-376.
[21]
{21} A.P. Punnen, F. Margot, S.N. Kabadi, TSP heuristics: domination analysis and complexity, Algorithmica 35 (2003) 111-127.
[22]
{22} A.P. Punnen, S. Kabadi, Domination analysis of some heuristics for the asymmetric traveling salesman problem, Discrete Appl. Math. 119 (2002) 117-128.
[23]
{23} E. Sperner, Ein Satz über Untermegen einer endlichen Menge, Math. Z. 27 (1928) 544-548.
[24]
{24} M. Talagrand, On Russo's approximate 0-1-law, Ann. Prob. 22 (1994) 1376-1387.

Cited By

View all
  • (2017)Average value of solutions of the bipartite quadratic assignment problem and linkages to domination analysisOperations Research Letters10.1016/j.orl.2017.03.00445:3(232-237)Online publication date: 1-May-2017
  • (2017)The bilinear assignment problemMathematical Programming: Series A and B10.1007/s10107-017-1111-1166:1-2(185-205)Online publication date: 1-Nov-2017
  • (2015)Average value of solutions for the bipartite boolean quadratic programs and rounding algorithmsTheoretical Computer Science10.1016/j.tcs.2014.11.008565:C(77-89)Online publication date: 2-Feb-2015
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Algorithms
Journal of Algorithms  Volume 50, Issue 1
January 2004
131 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 January 2004

Author Tags

  1. approximation algorithms
  2. combinatorial optimization
  3. domination analysis

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2017)Average value of solutions of the bipartite quadratic assignment problem and linkages to domination analysisOperations Research Letters10.1016/j.orl.2017.03.00445:3(232-237)Online publication date: 1-May-2017
  • (2017)The bilinear assignment problemMathematical Programming: Series A and B10.1007/s10107-017-1111-1166:1-2(185-205)Online publication date: 1-Nov-2017
  • (2015)Average value of solutions for the bipartite boolean quadratic programs and rounding algorithmsTheoretical Computer Science10.1016/j.tcs.2014.11.008565:C(77-89)Online publication date: 2-Feb-2015
  • (2014)Satisfying more than half of a system of linear equations over GF(2)Journal of Computer and System Sciences10.1016/j.jcss.2013.10.00280:4(687-696)Online publication date: 1-Jun-2014
  • (2013)Domination analysis of algorithms for bipartite boolean quadratic programsProceedings of the 19th international conference on Fundamentals of Computation Theory10.1007/978-3-642-40164-0_26(271-282)Online publication date: 19-Aug-2013
  • (2012)Hypercontractive inequality for pseudo-Boolean functions of bounded Fourier widthDiscrete Applied Mathematics10.5555/2344966.2345139160:15(2323-2328)Online publication date: 1-Oct-2012
  • (2012)Constraint satisfaction problems parameterized above or below tight boundsThe Multivariate Algorithmic Revolution and Beyond10.5555/2344236.2344252(257-286)Online publication date: 1-Jan-2012
  • (2012)Kernelization --- preprocessing with a guaranteeThe Multivariate Algorithmic Revolution and Beyond10.5555/2344236.2344248(129-161)Online publication date: 1-Jan-2012
  • (2011)A probabilistic approach to problems parameterized above or below tight boundsJournal of Computer and System Sciences10.1016/j.jcss.2010.06.00177:2(422-429)Online publication date: 1-Mar-2011
  • (2010)Solving MAX-r-SAT above a tight lower boundProceedings of the twenty-first annual ACM-SIAM symposium on Discrete algorithms10.5555/1873601.1873645(511-517)Online publication date: 17-Jan-2010
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media