Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

ClayRS: : An end-to-end framework for reproducible knowledge-aware recommender systems

Published: 01 October 2023 Publication History

Abstract

Knowledge-aware recommender systems represent one of the most innovative research directions in the area of recommender systems, aiming at giving meaning to information expressed in natural language and obtaining a deeper comprehension of the information conveyed by textual content.
Though rich and constantly evolving, the literature on knowledge-aware recommender systems is particularly scattered when considering software libraries. This makes it difficult to easily exploit advanced content representation and implement replicable experimental protocols. Accordingly, this work aims to fill in these gaps by introducing ClayRS, an end-to-end framework for replicable knowledge-aware recommender systems. ClayRS provides researchers and practitioners with the most recent state-of-the-art methodologies to build knowledge-aware content representations and also includes methods to exploit these representations in content-based recommendation algorithms. Finally, the structure of the framework also allows for building replicable pipelines to push forward the current research in the area and to develop accountable recommender systems.

References

[1]
Jannach D., Zanker M., Felfernig A., Friedrich G., Recommender Systems: An Introduction, Cambridge University Press, 2010.
[3]
Zhang S., Yao L., Sun A., Tay Y., Deep learning based recommender system: A survey and new perspectives, ACM Comput. Surv. 52 (1) (2019) 1–38.
[4]
de Gemmis M., Lops P., Musto C., Narducci F., Semeraro G., Semantics-aware content-based recommender systems, in: Ricci F., Rokach L., Shapira B. (Eds.), Recommender Systems Handbook, Springer, 2015, pp. 119–159.
[5]
Musto C., de Gemmis M., Lops P., Narducci F., Semeraro G., Semantics and content-based recommendations, in: Ricci F., Rokach L., Shapira B. (Eds.), Recommender Systems Handbook, Springer, 2022, pp. 251–2987.
[6]
Baker M., 1,500 Scientists lift the lid on reproducibility, Nature 533 (7604) (2016) 452–454,.
[7]
Plesser H.E., Reproducibility vs. Replicability: A brief history of a confused terminology, Front. Neuroinf. 11 (2017) 76,.
[8]
Collberg C.S., Proebsting T.A., Repeatability in computer systems research, Commun. ACM 59 (3) (2016) 62–69,.
[9]
Gundersen O.E., Kjensmo S., State of the art: Reproducibility in artificial intelligence, in: McIlraith S.A., Weinberger K.Q. (Eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI-18, New Orleans, Louisiana, USA, February 2-7, 2018, AAAI Press, 2018, pp. 1644–1651.
[10]
Gundersen O.E., Shamsaliei S., Isdahl R., Do machine learning platforms provide out-of-the-box reproducibility?, Future Gener. Comput. Syst. 126 (2022) 34–47,.
[11]
Dacrema M.F., Boglio S., Cremonesi P., Jannach D., A troubling analysis of reproducibility and progress in recommender systems research, ACM Trans. Inf. Syst. 39 (2) (2021) 20:1–20:49.
[12]
Rendle S., Zhang L., Koren Y., On the difficulty of evaluating baselines: A study on recommender systems, 2019, CoRR abs/1905.01395. arXiv:1905.01395. URL http://arxiv.org/abs/1905.01395.
[13]
Ekstrand M.D., Ludwig M., Konstan J.A., Riedl J., Rethinking the recommender research ecosystem: reproducibility, openness, and LensKit, in: Mobasher B., Burke R.D., Jannach D., Adomavicius G. (Eds.), Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, October 23-27, 2011, ACM, 2011, pp. 133–140,.
[14]
Konstan J.A., Adomavicius G., Toward identification and adoption of best practices in algorithmic recommender systems research, in: Bellogín A., Castells P., Said A., Tikk D. (Eds.), Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation, RepSys 2013, Hong Kong, China, October 12, 2013, ACM, 2013, pp. 23–28,.
[15]
Bellogín A., Said A., Improving accountability in recommender systems research through reproducibility, User Model. User Adapt. Interact. 31 (5) (2021) 941–977,.
[16]
Polatidis N., Pimenidis E., Fish A., Kapetanakis S., A guideline-based approach for assisting with the reproducibility of experiments in recommender systems evaluation, Int. J. Artif. Intell. Tools 28 (8) (2019) 1960011:1–1960011:16,.
[17]
Bellogín A., Castells P., Cantador I., Precision-oriented evaluation of recommender systems: an algorithmic comparison, in: Mobasher B., Burke R.D., Jannach D., Adomavicius G. (Eds.), Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, October 23-27, 2011, ACM, 2011, pp. 333–336,.
[18]
Ihemelandu N., Ekstrand M.D., Statistical inference: The missing piece of RecSys experiment reliability discourse, in: Zangerle E., Bauer C., Said A. (Eds.), Proceedings of the Perspectives on the Evaluation of Recommender Systems Workshop 2021 Co-Located with the 15th ACM Conference on Recommender Systems, in: CEUR Workshop Proceedings, vol. 2955, RecSys 2021, Amsterdam, the Netherlands, September 25, 2021, CEUR-WS.org, 2021, URL http://ceur-ws.org/Vol-2955/paper9.pdf.
[19]
Lops P., Musto C., Narducci F., Semeraro G., Semantics in Adaptive and Personalised Systems - Methods, Tools and Applications, Springer, 2019,.
[20]
Miller G., WordNet: An on-line lexical database, Int. J. Lexicograph. 3 (4) (1990) (Special Issue).
[21]
Navigli R., Ponzetto S.P., BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network, Artificial Intelligence 193 (2012) 217–250,.
[22]
Vrandecic D., Krötzsch M., Wikidata: A free collaborative knowledgebase, Commun. ACM 57 (10) (2014) 78–85,.
[23]
Mikolov T., Sutskever I., Chen K., Corrado G.S., Dean J., Distributed representations of words and phrases and their compositionality, in: Advances in Neural Information Processing Systems, 2013, pp. 3111–3119.
[24]
J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2014, pp. 1532–1543.
[25]
J.D.M.-W.C. Kenton, L.K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, in: Proceedings of NAACL-HLT, 2019, pp. 4171–4186.
[26]
Brown T., Mann B., Ryder N., Subbiah M., Kaplan J.D., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A., et al., Language models are few-shot learners, Adv. Neural Inf. Process. Syst. 33 (2020) 1877–1901.
[27]
Harris Z.S., Mathematical Structures of Language, Interscience, New York, 1968.
[28]
P. Lops, C. Musto, M. Polignano, Semantics-aware Content Representations for Reproducible Recommender Systems (SCoRe), in: Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization, 2022, pp. 354–356.
[29]
Landauer T.K., Foltz P.W., Laham D., An introduction to latent semantic analysis, Discourse Processes 25 (2–3) (1998) 259–284.
[30]
Sahlgren M., The Word-Space Model: Using Distributional Analysis to Represent Syntagmatic and Paradigmatic Relations Between Words in High-Dimensional Vector Spaces, (Ph.D. thesis) Stockholm University, 2006.
[31]
Q. Le, T. Mikolov, Distributed representations of sentences and documents, in: International Conference on Machine Learning, 2014, pp. 1188–1196.
[32]
Deerwester S., Dumais S.T., Furnas G.W., Landauer T.K., Harshman R., Indexing by latent semantic analysis, J. Am. Soc. Inf. Sci. 41 (6) (1990) 391–407.
[33]
Papadimitriou C.H., Raghavan P., Tamaki H., Vempala S., Latent semantic indexing: A probabilistic analysis, in: PODS, ACM Press, 1998, pp. 159–168.
[34]
Vempala S.S., the Random Projection Method, Vol. 65, American Mathematical Society, 2004.
[35]
J. Pennington, R. Socher, C.D. Manning, GloVe: Global Vectors for Word Representation, in: Empirical Methods in Natural Language Processing, EMNLP, 2014, pp. 1532–1543.
[36]
Peters M.E., Neumann M., Iyyer M., Gardner M., Clark C., Lee K., Zettlemoyer L., Deep contextualized word representations, 2018, CoRR abs/1802.05365. arXiv:1802.05365. URL http://arxiv.org/abs/1802.05365.
[37]
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser Ł., Polosukhin I., Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).
[38]
A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, S. Bowman, GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding, in: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 2018, pp. 353–355.
[39]
Bizer C., Lehmann J., Kobilarov G., Auer S., Becker C., Cyganiak R., Hellmann S., DBpedia-A crystallization point for the web of data, J. Web Semantics 7 (3) (2009) 154–165.
[40]
Auer S., Bizer C., Kobilarov G., Lehmann J., Cyganiak R., Ives Z., DBpedia: A Nucleus for a Web of Open Data, Springer, 2007.
[41]
Manning C.D., Schütze H., Foundations of Statistical Natural Language Processing, vol. 999, MIT Press, 1999.
[42]
Rao D., McNamee P., Dredze M., Entity linking: Finding extracted entities in a knowledge base, in: Multi-Source, Multilingual Information Extraction and Summarization, Springer, 2013, pp. 93–115.
[43]
R. Navigli, S.P. Ponzetto, BabelRelate! A Joint Multilingual Approach to Computing Semantic Relatedness, in: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI-12, Toronto, Canada, 2012.
[44]
da Costa A., Fressato E., Neto F., Manzato M., Campello R., Case recommender: A flexible and extensible python framework for recommender systems, in: Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18, ACM, New York, NY, USA, 2018, pp. 494–495,. URL http://doi.acm.org/10.1145/3240323.3241611.
[45]
Ekstrand M.D., LensKit for Python: Next-generation software for recommender systems experiments, in: d’Aquin M., Dietze S., Hauff C., Curry E., Cudré-Mauroux P. (Eds.), CIKM ’20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, October 19-23, 2020, ACM, 2020, pp. 2999–3006,.
[46]
Guo G., Zhang J., Sun Z., Yorke-Smith N., LibRec: A Java library for recommender systems, in: Cristea A.I., Masthoff J., Said A., Tintarev N. (Eds.), Posters, Demos, Late-Breaking Results and Workshop Proceedings of the 23rd Conference on User Modeling, Adaptation, and Personalization, in: CEUR Workshop Proceedings, vol. 1388, UMAP 2015, Dublin, Ireland, June 29 - July 3, 2015, CEUR-WS.org, 2015, URL http://ceur-ws.org/Vol-1388/demo_paper1.pdf.
[47]
Gantner Z., Rendle S., Freudenthaler C., Schmidt-Thieme L., MyMediaLite: A free recommender system library, in: Mobasher B., Burke R.D., Jannach D., Adomavicius G. (Eds.), Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, October 23-27, 2011, ACM, 2011, pp. 305–308,.
[48]
Vargas S., Novelty and diversity enhancement and evaluation in recommender systems and information retrieval, in: Geva S., Trotman A., Bruza P., Clarke C.L.A., Järvelin K. (Eds.), The 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’14, Gold Coast, QLD, Australia - July 06 - 11, 2014, ACM, 2014, p. 1281,.
[49]
Hug N., Surprise: A python library for recommender systems, J. Open Source Softw. 5 (52) (2020) 2174,.
[50]
Sun Z., Yu D., Fang H., Yang J., Qu X., Zhang J., Geng C., Are we evaluating rigorously? Benchmarking recommendation for reproducible evaluation and fair comparison, in: Santos R.L.T., Marinho L.B., Daly E.M., Chen L., Falk K., Koenigstein N., de Moura E.S. (Eds.), RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22-26, 2020, ACM, 2020, pp. 23–32,.
[51]
Sonboli N., Mansoury M., Guo Z., Kadekodi S., Liu W., Liu Z., Schwartz A., Burke R., Librec-auto: A tool for recommender systems experimentation, in: Demartini G., Zuccon G., Culpepper J.S., Huang Z., Tong H. (Eds.), CIKM ’21: The 30th ACM International Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021, ACM, 2021, pp. 4584–4593,.
[52]
Said A., Bellogín A., Rival: A toolkit to foster reproducibility in recommender system evaluation, in: Kobsa A., Zhou M.X., Ester M., Koren Y. (Eds.), Eighth ACM Conference on Recommender Systems, RecSys ’14, Foster City, Silicon Valley, CA, USA - October 06 - 10, 2014, ACM, 2014, pp. 371–372,.
[53]
Anelli V.W., Bellogín A., Ferrara A., Malitesta D., Merra F.A., Pomo C., Donini F.M., Di Noia T., Elliot: A comprehensive and rigorous framework for reproducible recommender systems evaluation, in: Diaz F., Shah C., Suel T., Castells P., Jones R., Sakai T. (Eds.), SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, Canada, July 11-15, 2021, ACM, 2021, pp. 2405–2414,.
[54]
Salah A., Truong Q., Lauw H.W., Cornac: A comparative framework for multimodal recommender systems, J. Mach. Learn. Res. 21 (2020) 95:1–95:5. URL http://jmlr.org/papers/v21/19-805.html.
[55]
Zhao W.X., Mu S., Hou Y., Lin Z., Chen Y., Pan X., Li K., Lu Y., Wang H., Tian C., Min Y., Feng Z., Fan X., Chen X., Wang P., Ji W., Li Y., Wang X., Wen J., RecBole: Towards a unified, comprehensive and efficient framework for recommendation algorithms, in: Demartini G., Zuccon G., Culpepper J.S., Huang Z., Tong H. (Eds.), CIKM ’21: The 30th ACM International Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021, ACM, 2021, pp. 4653–4664,.
[56]
Yang L., Bagdasaryan E., Gruenstein J., Hsieh C., Estrin D., OpenRec: A modular framework for extensible and adaptable recommendation algorithms, in: Chang Y., Zhai C., Liu Y., Maarek Y. (Eds.), Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, February 5-9, 2018, ACM, 2018, pp. 664–672,.
[57]
Kula M., Metadata embeddings for user and item cold-start recommendations, in: Bogers T., Koolen M. (Eds.), Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender Systems Co-Located with 9th ACM Conference on Recommender Systems, in: CEUR Workshop Proceedings, vol. 1448, RecSys 2015, Vienna, Austria, September 16-20, 2015, CEUR-WS.org, 2015, pp. 14–21. URL http://ceur-ws.org/Vol-1448/paper4.pdf.
[58]
Ardito C., Colafiglio T., Di Noia T., Di Sciascio E., Brain computer interface, visual tracker and artificial intelligence for a music polyphony generation system, in: Ardito C., Lanzilotti R., Malizia A., Petrie H., Piccinno A., Desolda G., Inkpen K. (Eds.), Human-Computer Interaction - INTERACT 2021 - 18th IFIP TC 13 International Conference, Bari, Italy, August 30 - September 3, 2021, Proceedings, Part V, in: Lecture Notes in Computer Science, vol. 12936, Springer, 2021, pp. 368–371,.
[59]
E. Loper, S. Bird, NLTK: The Natural Language Toolkit, in: Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics, 2002, pp. 63–70.
[60]
Vasiliev Y., Natural Language Processing with Python and SpaCy: A Practical Introduction, No Starch Press, 2020.
[61]
Baziotis C., Pelekis N., Doulkeridis C., DataStories at SemEval-2017 task 4: Deep LSTM with attention for message-level and topic-based sentiment analysis, in: Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval-2017, Association for Computational Linguistics, Vancouver, Canada, 2017, pp. 747–754.
[62]
Řehůřek R., Sojka P., Software framework for topic modelling with large corpora, in: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, ELRA, Valletta, Malta, 2010, pp. 45–50. http://is.muni.cz/publication/884893/en.
[63]
T. Mikolov, W.-t. Yih, G. Zweig, Linguistic regularities in continuous space word representations, in: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2013, pp. 746–751.
[64]
Bojanowski P., Grave E., Joulin A., Mikolov T., Enriching word vectors with subword information, Trans. Assoc. Comput. Linguist. 5 (2017) 135–146.
[65]
Blei D.M., Ng A.Y., Jordan M.I., Latent Dirichlet allocation, J. Mach. Learn. Res. 3 (2003) 993–1022. URL http://jmlr.org/papers/v3/blei03a.html.
[66]
M. Sahlgren, An Introduction to Random Indexing, in: Proc. of the Methods and Applications of Semantic Indexing Workshop At the 7th International Conference on Terminology and Knowledge Engineering, TKE, 2005.
[67]
N. Reimers, I. Gurevych, Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP, 2019, pp. 3982–3992.
[68]
Wolf T., Debut L., Sanh V., Chaumond J., Delangue C., Moi A., Cistac P., Rault T., Louf R., Funtowicz M., Brew J., HuggingFace’s transformers: State-of-the-art natural language processing, 2019, CoRR abs/1910.03771. arXiv:1910.03771. URL http://arxiv.org/abs/1910.03771.
[69]
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.
[70]
Moro A., Raganato A., Navigli R., Entity linking meets word sense disambiguation: A unified approach, Trans. Assoc. Comput. Linguist. 2 (2014) 231–244.
[71]
Musto C., Lops P., de Gemmis M., Semeraro G., Context-aware graph-based recommendations exploiting personalized PageRank, Knowl.-Based Syst. 216 (2021),.
[72]
Lops P., Musacchio E., Musto C., Polignano M., Silletti A., Semeraro G., Reproducibility analysis of recommender systems relying on visual features: Traps, pitfalls, and countermeasures, in: Seventeenth ACM Conference on Recommender Systems, RecSys ’23, September 18–22, 2023, Singapore, ACM, 2023,. doi:3604915.3609492.
[73]
Abdollahpouri H., Mansoury M., Burke R., Mobasher B., The unfairness of popularity bias in recommendation, 2019, arXiv preprint arXiv:1907.13286.
[74]
Spillo G., Musto C., Polignano M., Lops P., de Gemmis M., Semeraro G., Combining graph neural networks and sentence encoders for knowledge-aware recommendations, in: Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2023, Limassol, Cyprus, June 26-29, 2023, ACM, 2023, pp. 1–12,.
[75]
Polignano M., Musto C., de Gemmis M., Lops P., Semeraro G., Together is better: Hybrid recommendations combining graph embeddings and contextualized word representations, in: Pampín H.J.C., Larson M.A., Willemsen M.C., Konstan J.A., McAuley J.J., Garcia-Gathright J., Huurnink B., Oldridge E. (Eds.), RecSys ’21: Fifteenth ACM Conference on Recommender Systems, Amsterdam, the Netherlands, 27 September 2021 - 1 October 2021, ACM, 2021, pp. 187–198,.
[76]
Cai H., Zheng V.W., Chang K.C.-C., A comprehensive survey of graph embedding: Problems, techniques, and applications, IEEE Trans. Knowl. Data Eng. 30 (9) (2018) 1616–1637.
[77]
Goyal P., Ferrara E., Graph embedding techniques, applications, and performance: A survey, Knowl.-Based Syst. 151 (2018) 78–94.
[78]
Palumbo E., Rizzo G., Troncy R., Baralis E., Osella M., Ferro E., Translational models for item recommendation, in: European Semantic Web Conference, Springer, 2018, pp. 478–490.
[79]
Z. Sun, J. Yang, J. Zhang, A. Bozzon, L.-K. Huang, C. Xu, Recurrent knowledge graph embedding for effective recommendation, in: Proceedings of the 12th ACM Conference on Recommender Systems, 2018, pp. 297–305.
[80]
Song W., Duan Z., Yang Z., Zhu H., Zhang M., Tang J., Explainable knowledge graph-based recommendation via deep reinforcement learning, 2019, arXiv preprint arXiv:1906.09506.
[81]
Musto C., Narducci F., Lops P., de Gemmis M., Semeraro G., Linked open data-based explanations for transparent recommender systems, Int. J. Hum. Comput. Stud. 121 (2019) 93–107,.

Cited By

View all
  • (2024)Graph Convolution Network and User Interest Modeling for Enhanced Recommendation SystemsProceedings of the 2024 3rd International Conference on Cryptography, Network Security and Communication Technology10.1145/3673277.3673334(332-339)Online publication date: 19-Jan-2024
  • (2024)Instructing and Prompting Large Language Models for Explainable Cross-domain RecommendationsProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3688137(298-308)Online publication date: 8-Oct-2024
  • (2024)ReChorus2.0: A Modular and Task-Flexible Recommendation LibraryProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3688076(454-464)Online publication date: 8-Oct-2024
  • Show More Cited By

Index Terms

  1. ClayRS: An end-to-end framework for reproducible knowledge-aware recommender systems
                Index terms have been assigned to the content through auto-classification.

                Recommendations

                Comments

                Please enable JavaScript to view thecomments powered by Disqus.

                Information & Contributors

                Information

                Published In

                cover image Information Systems
                Information Systems  Volume 119, Issue C
                Oct 2023
                273 pages

                Publisher

                Elsevier Science Ltd.

                United Kingdom

                Publication History

                Published: 01 October 2023

                Author Tags

                1. Knowledge-aware representations
                2. Recommender systems
                3. Reproducibility
                4. Recommendation frameworks
                5. Embeddings

                Qualifiers

                • Research-article

                Contributors

                Other Metrics

                Bibliometrics & Citations

                Bibliometrics

                Article Metrics

                • Downloads (Last 12 months)0
                • Downloads (Last 6 weeks)0
                Reflects downloads up to 17 Dec 2024

                Other Metrics

                Citations

                Cited By

                View all
                • (2024)Graph Convolution Network and User Interest Modeling for Enhanced Recommendation SystemsProceedings of the 2024 3rd International Conference on Cryptography, Network Security and Communication Technology10.1145/3673277.3673334(332-339)Online publication date: 19-Jan-2024
                • (2024)Instructing and Prompting Large Language Models for Explainable Cross-domain RecommendationsProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3688137(298-308)Online publication date: 8-Oct-2024
                • (2024)ReChorus2.0: A Modular and Task-Flexible Recommendation LibraryProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3688076(454-464)Online publication date: 8-Oct-2024
                • (2024)Beyond Trade-offs: Unveiling Fairness-Constrained Diversity in News Recommender SystemsProceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization10.1145/3627043.3659571(143-148)Online publication date: 22-Jun-2024

                View Options

                View options

                Media

                Figures

                Other

                Tables

                Share

                Share

                Share this Publication link

                Share on social media