Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Algorithmic aspects of k-tuple total domination in graphs

Published: 01 November 2012 Publication History

Abstract

For a fixed positive integer k, a k-tuple total dominating set of a graph G=(V,E) is a subset TD"k of V such that every vertex in V is adjacent to at least k vertices of TD"k. In minimum k-tuple total dominating set problem (Mink-Tuple Total Dom Set), it is required to find a k-tuple total dominating set of minimum cardinality and Decide Mink-Tuple Total Dom Set is the decision version of Mink-Tuple Total Dom Set problem. In this paper, we show that Decide Mink-Tuple Total Dom Set is NP-complete for split graphs, doubly chordal graphs and bipartite graphs. For chordal bipartite graphs, we show that Mink-Tuple Total Dom Set can be solved in polynomial time. We also propose some hardness results and approximation algorithms for Mink-Tuple Total Dom Set problem.

References

[1]
Alimonti, P. and Kann, V., Hardness of approximating problems on cubic graphs. In: Lecture Notes in Comput. Sci., vol. 1203. pp. 288-298.
[2]
Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A. and Protasi, M., Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. 1999. Springer-Verlag, Berlin.
[3]
Brandstädt, A., Classes of bipartite graphs related to chordal graphs. Discrete Appl. Math. v32 i1. 51-60.
[4]
Brandstädt, A., Dragan, F.F., Chepoi, V. and Voloshin, V., Dually chordal graphs. SIAM J. Discrete Math. v11 i3. 437-455.
[5]
Chang, G.J. and Nemhauser, G., The k-domination and k-stability problems on sun-free chordal graphs. SIAM J. Algebraic Discrete Methods. v6 i4. 721-730.
[6]
Chlebí***k, M. and Chlebí***ková, J., Approximation hardness of dominating set problems in bounded degree graphs. Inform. and Comput. v206 i11. 1264-1275.
[7]
Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C., Introduction to Algorithms. 2002. Prentice Hall, India.
[8]
Farber, M., Characterizations of strongly chordal graphs. Discrete Math. v43 i2-3. 173-189.
[9]
Feige, U., A threshold of lnn for approximating set cover. J. ACM. v45 i4. 634-652.
[10]
Fulkerson, D.R. and Gross, O.A., Incidence matrices and interval graphs. Pacific J. Math. v15. 835-855.
[11]
. In: Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (Eds.), Monogr. Textb. Pure Appl. Math., vol. 209. Marcel Dekker Inc., New York.
[12]
Haynes, T.W., Hedetniemi, S.T. and Slater, P.J., Fundamentals of Domination in Graphs. 1998. Monogr. Textb. Pure Appl. Math., 1998.Marcel Dekker Inc., New York.
[13]
Henning, M.A. and Kazemi, A.P., k-tuple total domination in graphs. Discrete Appl. Math. v158. 1006-1011.
[14]
M.A. Henning, A.P. Kazemi, k-tuple total domination in cross products of graphs, J. Comb. Optim., http://dx.doi.org/10.1007/s10878-011-9389-z.
[15]
Karp, R.M., Reducibility among combinatorial problems. In: Complexity of Computer Computations, Proc. Sympos., Plenum Press, New York. pp. 85-103.
[16]
Klasing, R. and Laforest, C., Hardness results and approximation algorithms of k-tuple domination in graphs. Inform. Process. Lett. v89. 75-83.
[17]
Laskar, R., Pfaff, J., Hedetniemi, S.M. and Hedetniemi, S.T., On the algorithmic complexity of total domination. SIAM J. Alg. Disc. Math. v5 i3. 420-425.
[18]
Liao, C.S. and Chang, G.J., k-tuple domination in graphs. Inform. Process. Lett. v87. 45-50.
[19]
Papadimitriou, C.H. and Yannakakis, M., Optimization, approximation and complexity classes. J. Comput. System Sci. v43. 425-440.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Information Processing Letters
Information Processing Letters  Volume 112, Issue 21
November, 2012
44 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 01 November 2012

Author Tags

  1. APX-complete
  2. Domination
  3. Graph algorithms
  4. NP-complete
  5. Total domination
  6. k-Tuple total domination

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)A simple optimal algorithm for k-tuple dominating problem in interval graphsJournal of Combinatorial Optimization10.1007/s10878-022-00932-445:1Online publication date: 1-Jan-2023
  • (2021)Total 2-domination of proper interval graphsDiscrete Applied Mathematics10.1016/j.dam.2021.07.015302:C(256-262)Online publication date: 30-Oct-2021
  • (2020)Distributed Self-Stabilizing Capacitated Maximal Independent Set Construction in Wireless Sensor NetworksWireless Personal Communications: An International Journal10.1007/s11277-020-07528-3114:4(3271-3293)Online publication date: 1-Oct-2020
  • (2020)Hardness Results of Global Total k-Domination Problem in GraphsAlgorithms and Discrete Applied Mathematics10.1007/978-3-030-39219-2_8(92-101)Online publication date: 13-Feb-2020
  • (2018)Domination parameters with number 2Discrete Applied Mathematics10.1016/j.dam.2017.08.017235:C(23-50)Online publication date: 30-Jan-2018
  • (2016)Complexity of total outer-connected domination problem in graphsDiscrete Applied Mathematics10.1016/j.dam.2015.05.009199:C(110-122)Online publication date: 30-Jan-2016
  • (2016)An efficient algorithm for distance total domination in block graphsJournal of Combinatorial Optimization10.1007/s10878-014-9758-531:1(372-381)Online publication date: 1-Jan-2016
  • (2014)Efficient self-stabilizing algorithms for minimal total k-dominating sets in graphsInformation Processing Letters10.1016/j.ipl.2014.02.002114:7(339-343)Online publication date: 1-Jul-2014
  • (2013)Computing a minimum outer-connected dominating set for the class of chordal graphsInformation Processing Letters10.1016/j.ipl.2013.05.001113:14-16(552-561)Online publication date: 1-Jul-2013

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media