Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

The influence of concurrent mobile notifications on individual responses

Published: 01 December 2019 Publication History

Highlights

Mobile notifications frequently build-up into diverse stacks for the user to review.
Notification arrivals can trigger responses to those already in the stack.
Stack size and notification position can negatively influence the response process.
Notification management can prolong the end of device usage.
Interruption policies do not always reflect response behaviour.

Abstract

Notifications on mobile devices punctuate our daily lives to provide information and prompt for further engagement. Investigations into the cognitive processes involved in consuming notifications are common across the literature, however most research to date investigates notifications in isolation of one another. In reality, notifications often coexist together, forming a “stack”, however the behavioural implications of this on the response towards individual notifications has received limited attention. Through an in-the-wild study of 1889 Android devices, we observe user behaviour in a stream of 30 million notifications from over 6000 applications. We find distinct strategies for user management of the notification stack within usage sessions, beyond the behaviour patterns observable from responses to individual notifications. From the analysis, we make recommendations for collecting and reporting data from mobile applications to improve validity through timely responses, and capture potential confounding features.

References

[1]
N. van Berkel, M. Budde, S. Wijenayake, J. Goncalves, Improving accuracy in mobile human contributions: an overview, Proc. UbiComp’18, ACM, 2018, pp. 594–599.
[2]
N. van Berkel, D. Ferreira, V. Kostakos, The experience sampling method on mobile devices, ACM Comput. Surv. (CSUR) 50 (6) (2017) 93.
[3]
M. Böhmer, C. Lander, S. Gehring, D.P. Brumby, A. Krüger, Interrupted by a phone call: Exploring designs for lowering the impact of call notifications for smartphone users, Proc. CHI’14, ACM, 2014, pp. 3045–3054.
[4]
Y.-J. Chang, G. Paruthi, H.-Y. Wu, H.-Y. Lin, M.W. Newman, An investigation of using mobile and situated crowdsourcing to collect annotated travel activity data in real-word settings, Int. J. Hum.-Comput. Stud. 102 (2017) 81–102.
[5]
Y.-J. Chang, J.C. Tang, Investigating mobile users’ ringer mode usage and attentiveness and responsiveness to communication, Proc. MobileHCI’15, ACM, 2015, pp. 6–15.
[6]
M. Choy, D. Kim, J.-G. Lee, H. Kim, H. Motoda, Looking back on the current day: interruptibility prediction using daily behavioral features, Proc. UbiComp’16, ACM, 2016, pp. 1004–1015.
[7]
T. Dingler, M. Pielot, I’ll be there for you: quantifying attentiveness towards mobile messaging, Proc. MobileHCI’15, ACM, 2015, pp. 1–5.
[8]
J.E. Fischer, N. Yee, V. Bellotti, N. Good, S. Benford, C. Greenhalgh, Effects of content and time of delivery on receptivity to mobile interruptions, Proc. MobileHCI’10, ACM, 2010, pp. 103–112.
[9]
R. Fisher, R. Simmons, Smartphone interruptibility using density-weighted uncertainty sampling with reinforcement learning, ICMLA’11, 1, IEEE, 2011, pp. 436–441.
[10]
A. Gaggioli, G. Pioggia, G. Tartarisco, G. Baldus, D. Corda, P. Cipresso, G. Riva, A mobile data collection platform for mental health research, Pers. Ubiquitous Comput. 17 (2) (2013) 241–251.
[11]
S. Grandhi, Q. Jones, Technology-mediated interruption management, Int. J. Hum.-Comput. Stud. 68 (5) (2010) 288–306.
[12]
S. Grandhi, Q. Jones, Knock, knock! who’s there? Putting the user in control of managing interruptions, Int. J. Hum.-Comput. Stud. 79 (2015) 35–50.
[13]
F. Gravenhorst, A. Muaremi, J. Bardram, A. Grünerbl, O. Mayora, G. Wurzer, M. Frost, V. Osmani, B. Arnrich, P. Lukowicz, et al., Mobile phones as medical devices in mental disorder treatment: an overview, Pers. Ubiquitous Comput. 19 (2) (2015) 335–353.
[14]
C. Grevet, D. Choi, D. Kumar, E. Gilbert, Overload is overloaded: email in the age of gmail, Proc. CHI’14, ACM, 2014, pp. 793–802.
[15]
J. Gwizdka, Email task management styles: the cleaners and the keepers, Proc. CHI’04 (EA), ACM, 2004, pp. 1235–1238.
[16]
C. Horsch, S. Spruit, J. Lancee, R. van Eijk, R.J. Beun, M. Neerincx, W.-P. Brinkman, Reminders make people adhere better to a self-help sleep intervention, Health Technol. (2016) 1–16.
[17]
S.T. Iqbal, B.P. Bailey, Effects of intelligent notification management on users and their tasks, Proc. CHI’08, ACM, 2008, pp. 93–102.
[18]
S.T. Iqbal, B.P. Bailey, Oasis: a framework for linking notification delivery to the perceptual structure of goal-directed tasks, ACM Trans. Comput.-Hum. Interact.(TOCHI) 17 (4) (2010) 15.
[19]
C. Jesdabodi, W. Maalej, Understanding usage states on mobile devices, Proc. UbiComp’15, ACM, 2015, pp. 1221–1225.
[20]
R. LiKamWa, Y. Liu, N.D. Lane, L. Zhong, Moodscope: building a mood sensor from smartphone usage patterns, Proc. MobiSys’13, ACM, 2013, pp. 389–402.
[21]
H. Lopez-Tovar, A. Charalambous, J. Dowell, Managing smartphone interruptions through adaptive modes and modulation of notifications, Proc. IUI’15, ACM, 2015, pp. 296–299.
[22]
A. Mathur, N.D. Lane, F. Kawsar, Engagement-aware computing: modelling user engagement from mobile contexts, Proc. UbiComp’16, ACM, 2016, pp. 622–633.
[23]
D. McFarlane, K. Latorella, The scope and importance of human interruption in human-computer interaction design, Hum.-Comput. Interact. 17 (1) (2002) 1–61.
[24]
A. Mehrotra, R. Hendley, M. Musolesi, Prefminer: mining user’s preferences for intelligent mobile notification management, Proc. UbiComp’16, ACM, 2016, pp. 1223–1234.
[25]
Mehrotra, A., Hendley, R., Musolesi, M., Pejovic, V., 2015. Designing content-driven intelligent notification mechanisms for mobile applications. In: Proc. UbiComp’15. ACM.
[26]
A. Mehrotra, V. Pejovic, J. Vermeulen, R. Hendley, M. Musolesi, My phone and me: Understanding people’s receptivity to mobile notifications, Proc. CHI’16, ACM, 2016, pp. 1021–1032.
[27]
B. Noë, L.D. Turner, D.E. Linden, S.M. Allen, G.R. Maio, R.M. Whitaker, Timing rather than user traits mediates mood sampling on smartphones, BMC Res.Notes 10 (1) (2017) 481.
[28]
T. Okoshi, H. Nozaki, J. Nakazawa, H. Tokuda, J. Ramos, A.K. Dey, Towards attention-aware adaptive notification on smart phones, Pervasive Mob. Comput. 26 (2016) 17–34.
[29]
T. Okoshi, J. Ramos, H. Nozaki, J. Nakazawa, A.K. Dey, H. Tokuda, Attelia: Reducing user’s cognitive load due to interruptive notifications on smart phones, Proc. PerCom’15, IEEE, 2015, pp. 96–104.
[30]
A. Oulasvirta, T. Rattenbury, L. Ma, E. Raita, Habits make smartphone use more pervasive, Pers. Ubiquitous Comput. 16 (1) (2012) 105–114.
[31]
V. Pejovic, M. Musolesi, Interruptme: designing intelligent prompting mechanisms for pervasive applications, Proc. UbiComp’14, ACM, 2014, pp. 897–908.
[32]
Pielot, M., Church, K., de Oliveira, R., 2014a. An in-situ study of mobile phone notifications. In: Proc. MobileHCI’14. Vol.  14.
[33]
M. Pielot, R. de Oliveira, H. Kwak, N. Oliver, Didn’t you see my message?: predicting attentiveness to mobile instant messages, Proc. CHI’14, ACM, 2014, pp. 3319–3328.
[34]
M. Pielot, A. Vradi, S. Park, Dismissed!: a detailed exploration of how mobile phone users handle push notifications, Proc. MobileHCI’18, ACM, 2018, p. 3.
[35]
S. Pizza, B. Brown, D. McMillan, A. Lampinen, Smartwatch in vivo, Proc. CHI’16, ACM, 2016, pp. 5456–5469.
[36]
B. Poppinga, W. Heuten, S. Boll, Sensor-based identification of opportune moments for triggering notifications, Pervasive Comput., IEEE 13 (1) (2014) 22–29.
[37]
M.D. Rodríguez, J.R. Roa, A.L. Morán, S. Nava-Muñoz, Cammina: a mobile ambient information system to motivate elders to exercise, Pers. Ubiquitous Comput. 17 (6) (2013) 1127–1134.
[38]
S. Rodriguez Garzon, B. Deva, Geofencing 2.0: taking location-based notifications to the next level, Proc. UbiComp’14, ACM, 2014, pp. 921–932.
[39]
A. Sahami Shirazi, N. Henze, T. Dingler, M. Pielot, D. Weber, A. Schmidt, Large-scale assessment of mobile notifications, Proc. CHI’14, ACM, 2014, pp. 3055–3064.
[40]
F. Schulze, G. Groh, Conversational context helps improve mobile notification management, Proc. MobileHCI’16, ACM, 2016, pp. 518–528.
[41]
C.N. Scollon, C.-K. Prieto, E. Diener, Experience sampling: promises and pitfalls, strengths and weaknesses, J. Happiness Stud. 4 (2003) 5–34.
[42]
C. Shin, A.K. Dey, Automatically detecting problematic use of smartphones, Proc. UbiComp’13, ACM, 2013, pp. 335–344.
[43]
T. Sohn, K.A. Li, G. Lee, I. Smith, J. Scott, W.G. Griswold, Place-its: A study of location-based reminders on mobile phones, Proc. UbiComp’05, Springer, 2005, pp. 232–250.
[44]
T. Soikkeli, J. Karikoski, H. Hammainen, Diversity and end user context in smartphone usage sessions, 2011 Fifth International Conference on Next Generation Mobile Applications, Services and Technologies, IEEE, 2011, pp. 7–12.
[45]
C. Stothart, A. Mitchum, C. Yehnert, The attentional cost of receiving a cell phone notification., J.Exp.Psychol. 41 (4) (2015) 893.
[46]
L.D. Turner, S.M. Allen, R.M. Whitaker, Interruptibility prediction for ubiquitous systems: Conventions and new directions from a growing field, Proc. UbiComp’15, ACM, 2015, pp. 801–812.
[47]
L.D. Turner, S.M. Allen, R.M. Whitaker, Push or delay? decomposing smartphone notification response behaviour, Human Behavior Understanding, Lecture Notes in Computer Science, 9277, Springer International Publishing, 2015, pp. 69–83.
[48]
L.D. Turner, S.M. Allen, R.M. Whitaker, Reachable but not receptive: enhancing smartphone interruptibility prediction by modelling the extent of user engagement with notifications, Pervasive Mob. Comput. 40 (2017) 480–494.
[49]
L.D. Turner, R.M. Whitaker, S.M. Allen, D.E. Linden, K. Tu, J. Li, D. Towsley, Evidence to support common application switching behaviour on smartphones, R. Soc. Open Sci. 6 (3) (2019).
[50]
A. Visuri, N. van Berkel, C. Luo, J. Goncalves, D. Ferreira, V. Kostakos, Predicting interruptibility for manual data collection: a cluster-based user model, Proc. MobileHCI’17, ACM, 2017, p. 12.
[51]
A. Voit, B. Poppinga, D. Weber, M. Böhmer, N. Henze, S. Gehring, T. Okoshi, V. Pejovic, Ubittention: smart & ambient notification and attention management, Proc. UbiComp’16 (Adjunct), ACM, 2016, pp. 1520–1523.
[52]
A. Voit, D. Weber, N. Henze, Qualitative investigation of multi-device notifications, Proc. UbiComp’18, ACM, 2018, pp. 1263–1270.
[53]
D. Weber, A. Voit, J. Auda, S. Schneegass, N. Henze, Snooze!: investigating the user-defined deferral of mobile notifications, Proc. MobileHCI’18, ACM, 2018, p. 2.
[54]
D. Weber, A. Voit, N. Henze, Notification log: An open-source framework for notification research on mobile devices, Proc. UbiComp’18, ACM, 2018, pp. 1271–1278.
[55]
D. Weber, A. Voit, P. Kratzer, N. Henze, In-situ investigation of notifications in multi-device environments, Proc. UbiComp’16, ACM, 2016, pp. 1259–1264.
[56]
F. Yuan, X. Gao, J. Lindqvist, How busy are you?: Predicting the interruptibility intensity of mobile users, Proc. CHI’17, ACM, 2017, pp. 5346–5360.
[57]
M. Züger, T. Fritz, Interruptibility of software developers and its prediction using psycho-physiological sensors, Proc. CHI’15, ACM, 2015, pp. 2981–2990.

Cited By

View all
  • (2023)Alert Now or Never: Understanding and Predicting Notification Preferences of Smartphone UsersACM Transactions on Computer-Human Interaction10.1145/347886829:5(1-33)Online publication date: 6-Jan-2023
  • (2023)A management system to personalize notifications in the TV ecosystemProcedia Computer Science10.1016/j.procs.2023.01.338219:C(674-679)Online publication date: 1-Jan-2023
  • (2021)“Put it on the Top, I’ll Read it Later”: Investigating Users’ Desired Display Order for Smartphone NotificationsProceedings of the 2021 CHI Conference on Human Factors in Computing Systems10.1145/3411764.3445384(1-13)Online publication date: 6-May-2021
  • Show More Cited By

Index Terms

  1. The influence of concurrent mobile notifications on individual responses
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image International Journal of Human-Computer Studies
    International Journal of Human-Computer Studies  Volume 132, Issue C
    Dec 2019
    162 pages

    Publisher

    Academic Press, Inc.

    United States

    Publication History

    Published: 01 December 2019

    Author Tags

    1. Notifications
    2. Smartphone
    3. Mobile computing
    4. Experience sampling

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 26 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Alert Now or Never: Understanding and Predicting Notification Preferences of Smartphone UsersACM Transactions on Computer-Human Interaction10.1145/347886829:5(1-33)Online publication date: 6-Jan-2023
    • (2023)A management system to personalize notifications in the TV ecosystemProcedia Computer Science10.1016/j.procs.2023.01.338219:C(674-679)Online publication date: 1-Jan-2023
    • (2021)“Put it on the Top, I’ll Read it Later”: Investigating Users’ Desired Display Order for Smartphone NotificationsProceedings of the 2021 CHI Conference on Human Factors in Computing Systems10.1145/3411764.3445384(1-13)Online publication date: 6-May-2021
    • (2020)A preliminary investigation of the mismatch between attendance order and desired display order of smartphone notificationsAdjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers10.1145/3410530.3414384(71-74)Online publication date: 10-Sep-2020

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media