Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Categorization of seismic sources by auditory display

Published: 01 January 2016 Publication History

Abstract

Recordings of the Earth's surface oscillation as a function of time (seismograms) can be sonified by compressing time so that most of the signal's frequency spectrum falls in the audible range. The pattern-recognition capabilities of the human auditory system can then be applied to the auditory analysis of seismic data. In this experiment, we sonify a set of seismograms associated with a magnitude-5.6 Oklahoma earthquake recorded at 17 broadband stations within a radius of ~300km from the epicenter, and a group of volunteers listen to our sonified seismic data set via headphones. Most of the subjects have never heard a sonified seismogram before. Given the lack of studies on this subject, we prefer to make no preliminary hypotheses on the categorization criteria employed by the listeners: we follow the "free categorization" approach, asking listeners to simply group sounds that they perceive as "similar." We find that listeners tend to group together sonified seismograms sharing one or more underlying physical parameters, including source-receiver distance, source-receiver azimuth, and, possibly, crustal structure between source and receiver and/or at the receiver. This suggests that, if trained to do so, human listeners can recognize subtle features in sonified seismic signals. It remains to be determined whether auditory analysis can complement or lead to improvements upon the standard visual and computational approaches in specific tasks of geophysical interest. HighlightsSeismic data is sonified.The resulting sounds are presented to subjects in a listening task.Subjects are sensitive to some geophysical features.

References

[1]
K. Aki, P.G. Richards, University Science Books, Sausalito, CA, 2002.
[2]
Jordi Ballester, Herv Abdi, Jennifer Langlois, Dominique Peyron, Dominique Valentin, The odor of colors, Chemosens. Percept., 2 (2009) 203-213.
[3]
J.-P. Barthélémy, A. Guénoche, Trees and Proximity Representations, J. Wiley, Chichester, New York, 1991.
[4]
D. Begault, E.M. Wenzel, M.R. Anderson, Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source, J. Audio Eng. Soc., 49 (2001) 904-916.
[5]
A.H. Benade, Fundamentals of Musical Acoustics, Dover Publications, New York, 1990.
[6]
A.J. Berkhout, D. de Vries, J.-J. Vogel, Acoustic control by wave field synthesis, J. Acoust. Soc. Am., 93 (1993) 2765-2778.
[7]
Brenac, T., 2002. Méthodes de partition centrale appliquées à l'étude de catégories cognitives (Central partition methods applied to the study of cognitive categories). In: Poitevineau, J. (Ed.), Arbres, Classes, Distances (Trees, Classes, Distances)-Cahiers du LCPE (6). LCPE, Paris, France (Chapter 5).
[8]
M. Campillo, A. Paul, Long-range correlations in the diffuse seismic coda, Science, 299 (2003) 547-549.
[9]
E. Corteel, Synthesis of directional sources using wave field synthesis, possibilities, and limitations, EURASIP J. Adv. Signal Process. (2007) 90509.
[10]
R. Cowen, Sound bytes, Sci. Am., 312 (2015) 44-47.
[11]
Dombois, Florian, 2001. Using audification in planetary seismology. In: Proceedings of the International Conference on Auditory Display.
[12]
Dombois, Florian, 2002. Auditory seismology-on free oscillations, focal mechanisms, explosions and synthetic seismograms. In: Proceedings of the International Conference on Auditory Display.
[13]
Dombois, Florian, Eckel, Gerhard, 2011. Audification. In: Thomas Hermann, Andy Hunt, John G. Neuhoff (Eds.), The Sonification Handbook. Logos Verlag, Berlin, Germany (Chapter 12).
[14]
Dubois, D., 1991. Sémantique et cognition (Semantics and Cognition). Editions du CNRS, Paris, France.
[15]
Dubois, D., 2009. Le Sentir et le Dire : concepts et méthodes en psychologie et linguistique cognitives (Feel and Say: Concepts and Methods in Cognitive Psychology and Linguistics). l'Harmattan, Paris, France.
[16]
A.M. Dziewonski, T.A. Chou, J.H. Woodhouse, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86 (1981) 2825-2852.
[17]
Ekström, G., 2013. Love and Rayleigh phase-velocity maps, 5-40s, of the western and central USA from USArray data. Earth Planet. Sci. Lett. 402, 42-49, 10.1016/j.epsl.2013.11.022
[18]
G. Ekström, M. Nettles, A.M. Dziewonski, The global CMT project 2004-2010, Phys. Earth Planet. Inter., 200-201 (2012) 1-9.
[19]
G.E. Frantti, L.A. Levereault, Auditory discrimination of seismic signals from earthquakes and explosions, Bull. Seismol. Soc. Am., 55 (1965) 1-25.
[20]
B. Fry, F. Deschamps, E. Kissling, L. Stehly, D. Giardini, Layered azimuthal anisotropy of rayleigh wave phase velocities in the European Alpine lithosphere inferred from ambient noise, Earth Planet. Sci. Lett., 297 (2010) 95-102.
[21]
Gaillard, P., 2000. Etude de la perception des transitoires d'attaques des sons de steeldrums : particularités acoustiques, transformation par synthèse et catégorisation (Study of the perception of attack transients of steeldrums' sounds: acoustic characteristics, synthesis and categorization). Ph.D. Thesis, Université de Toulouse II - Le Mirail.
[22]
Gaillard, P., 2014. Website for TCL-LabX {http://petra.univ-tlse2.fr/tcl-labx}.
[23]
Guastavino, C., 2003. Etude sémantique et acoustique de la perception des basses fréquences dans l'environnement urbain (Semantic and acoustical study of the perception of low frequencies in the urban environment). Ph.D. Thesis, Université Pierre et Marie Curie.
[24]
C. Guastavino, Categorisation of environmental sounds, Can. J. Exp. Psychol., 61 (2007) 54-63.
[25]
W.M. Hartmann, How we localize sound, Phys. Today, 11 (1999) 24-29.
[26]
Hayward, Chris, 1994. Listening to the earth sing. In: Gregory Kramer (Ed.), Auditory Display-Sonification, Audification, and Auditory Interfaces. Addison-Wesley, Reading, Massachusetts, pp. 369-404 (Chapter 15).
[27]
Hermann, Thomas, Hunt, Andy, Neuhoff, John G., 2011. The Sonification Handbook. Logos Verlag, Berlin.
[28]
Holtzman, Benjamin, Candler, Jason, Turk, Matthew, Peter, Daniel, 2014. Seismic sound lab: sights, sounds and perception of the earth as an acoustic space. In: Sound, Music, and Motion. Springer International Publishing, Cham, Switzerland, pp. 161-174.
[29]
Karney, M.S., December 2006. Natural radio (news, comments and letters about natural radio) {http://naturalradiolab.com/PDF/NR2006_12.pdfhttp://naturalradiolab.com/PDF/NR2006_12.pdf}, (retrieved on 02.06.2015).
[30]
Keranen, Kathleen, Weingarten, Matthew, Abers, Geoffrey A., Bekins, Barbara, Ge, Shemin, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science 345, 448-451.
[31]
Kerr, Richard, 2013. Geophysical exploration linking deep earth and backyard geology. Science 340, 1283-1285.
[32]
Debi Kilb, Zhigang Peng, David Simpson, Andrew Meghan Michael, Meghan Fisher, Daniel Rohrlick, Listen, watch, learn, Seismol. Res. Lett.: Electron. Seismol., 83 (2012) 281-286.
[33]
Mai, P.M., Schorlemmer, D., Page, M., 2012. The source inversion validation (SIV) initiative: a collaborative study on uncertainty quantification in earthquake source inversions. In: EGU General Assembly.
[34]
J.-F. Marcotorchino, P. Michaud, Agrégation de similarités en classification automatique (Aggregation of Similarities in Automatic Classification), Rev. Stat. Appl., 30 (1982) 21-44.
[35]
Meier, Manuela, Saranti, Anna, 2008. Sonic exploration with earthquake data. In: Proceedings of the International Conference on Auditory Display.
[36]
A.J. Michael, Earthquake sounds, in: Encyclopedia of Solid Earth Geophysics, Springer, Dordrecht, The Netherlands, 2011.
[37]
J. Morel, C. Marquis-Favre, M. Pierrette, Road traffic in urban areas, Acta Acust. United Acust., 98 (2012) 166-178.
[38]
E. Parizet, V. Koehl, Application of free sorting tasks to sound quality experiments, Appl. Acoust., 73 (2011) 61-65.
[39]
A. Paté, J.-L. Le Carrou, B. Navarret, D. Dubois, B. Fabre, Influence of the electric guitar's fingerboard wood on guitarist's perception, Acta Acust. United Acust., 101 (2014) 347-359.
[40]
Zhigang Peng, Chastity Aiken, Debi Kilb, David R. Shelly, Bogdan Enescu, Listening to the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake, Seismol. Res. Lett., 83 (2012) 287-293.
[41]
Poitevineau, J., 2014a. Website for addtree {http://petra.univ-tlse2.fr/tcl-labx}.
[42]
Poitevineau, J., 2014b. Website for wpartcent {http://petra.univ-tlse2.fr/tcl-labx}.
[43]
W.M. Rand, Objective criteria for the evaluation of clustering methods, J. Am. Stat. Assoc., 66 (1971) 846-850.
[44]
Reed, J.C., Wheeler, J.O., Tucholke, B.E., 2005. Decade of North American Geology-Geologic Map of North America. Publihsed by the Geological Society of America, Boulder, Colorado, available online at {http://ngmdb.usgs.gov/gmna}.
[45]
J.G. Roederer, The Physics and Psychophysics of Music, Springer, New York, USA, 2008.
[46]
E. Rosch, B.B. Lloyd, Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1978.
[47]
Ruiz, S., Madariaga, R., 2013. Kinematic and dynamic inversion of the 2008 Northern Iwate earthquake. Bull. Seismol. Soc. Am. 103, 694-708.
[48]
Sheridan D. Speeth, Seismometer sounds, J. Acoust. Soc. Am., 33 (1961) 909-916.
[49]
Spors, S., Helwani, K., Ahrens, J., 2011. Local sound field synthesis by virtual acoustic scattering and time-reversal. In: 131st Audio Engineering Society Convention.
[50]
L. Stehly, M. Campillo, N.M. Shapiro, A study of the seismic noise from its long-range correlation properties, J. Geophys. Res., 111 (2006).
[51]
K.V. Steinbrugge, A catalog of earthquake related sounds, Bull. Seismol. Soc. Am., 64 (1974) 1409-1418.
[52]
A. Udías, Principles of Seismology, Cambridge University Press, Cambridge, UK, 1999.
[53]
Nicholas J. van der Elst, Heather M. Savage, Katie M. Keranen, Geoffrey A Abers, Enhanced remote earthquake triggering at fluid-injection sites in the midwestern United States, Science, 341 (2013) 164-167.
[54]
F.L. Wightman, D.J. Kistler, Resolution of front-back ambiguity in spatial hearing by listener and source movement, J. Acoust. Soc. Am., 105 (1999) 2841-2853.
[55]
Worrall, D., 2009. Information sonification: concepts, instruments and techniques. (Ph.D. thesis), University of Canberra.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Human-Computer Studies
International Journal of Human-Computer Studies  Volume 85, Issue C
January 2016
78 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 January 2016

Author Tags

  1. Acoustics
  2. Auditory
  3. Categorization
  4. Geology
  5. Perception
  6. Psychoacoustics
  7. Seismology
  8. Sonification
  9. Wave

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media