Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Comparing machine learning algorithms by union-free generic depth

Published: 09 July 2024 Publication History

Abstract

We propose a framework for descriptively analyzing sets of partial orders based on the concept of depth functions. Despite intensive studies in linear and metric spaces, there is very little discussion on depth functions for non-standard data types such as partial orders. We introduce an adaptation of the well-known simplicial depth to the set of all partial orders, the union-free generic (ufg) depth. Moreover, we utilize our ufg depth for a comparison of machine learning algorithms based on multidimensional performance measures. Concretely, we provide two examples of classifier comparisons on samples of standard benchmark data sets. Our results demonstrate promisingly the wide variety of different analysis approaches based on ufg methods. Furthermore, the examples outline that our approach differs substantially from existing benchmarking approaches, and thus adds a new perspective to the vivid debate on classifier comparison.1

References

[1]
W. Armstrong, Dependency structures of data base relationships, in: International Federation for Information Processing Congress 74, 1974, pp. 580–583.
[2]
R. Baker, P. Scarf, Modifying Bradley–Terry and other ranking models to allow ties, IMA J. Manag. Math. 32 (2021) 451–463.
[3]
Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, L. Lakhal, Mining minimal non-redundant association rules using frequent closed itemsets, in: J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K. Lau, C. Palamidessi, L. Pereira, Y. Sagiv, P. Stuckey (Eds.), Computational Logic — CL 2000, Springer, 2000, pp. 972–986.
[4]
A. Benavoli, G. Corani, F. Mangili, Should we really use post-hoc tests based on mean-ranks?, J. Mach. Learn. Res. 17 (2016) 152–161.
[5]
K. Bertet, C. Demko, J. Viaud, C. Guérin, Lattices, closures systems and implication bases: a survey of structural aspects and algorithms, Theor. Comput. Sci. 743 (2018) 93–109.
[6]
Blocher, H.; Schollmeyer, G. (2023): Data depth functions for non-standard data by use of formal concept analysis. https://www.foundstat.statistik.uni-muenchen.de/personen/mitglieder/blocher/blocheretal_properties23.pdf.
[7]
H. Blocher, G. Schollmeyer, C. Jansen, Statistical models for partial orders based on data depth and formal concept analysis, in: D. Ciucci, I. Couso, J. Medina, D. Slezak, D. Petturiti, B. Bouchon-Meunier, R. Yager (Eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems, Springer, 2022, pp. 17–30.
[8]
H. Blocher, G. Schollmeyer, C. Jansen, M. Nalenz, Depth functions for partial orders with a descriptive analysis of machine learning algorithms, in: E. Miranda, I. Montes, E. Quaeghebeur, B. Vantaggi (Eds.), Proceedings of the Thirteenth International Symposium on Imprecise Probability: Theories and Applications, in: Proceedings of Machine Learning Research, 2023, pp. 59–71.
[9]
R. Bradley, M. Terry, Rank analysis of incomplete block designs: I. The method of paired comparisons, Biometrika 39 (1952) 324–345.
[10]
F. Brandenburg, A. Gleißner, A. Hofmeier, Comparing and aggregating partial orders with Kendall tau distances, in: S. Rahman, S. Nakano (Eds.), WALCOM: Algorithms and Computation 2012, in: Lecture Notes in Computer Science, 2012, pp. 88–99.
[11]
G. Cawley, N. Talbot, On over-fitting in model selection and subsequent selection bias in performance evaluation, J. Mach. Learn. Res. 11 (2010) 2079–2107.
[12]
C. Chambers, F. Echenique, Stochastic choice, in: Revealed Preference Theory, in: Econometric Society Monographs, Cambridge University Press, 2016, pp. 95–113.
[13]
C. Chang, J. Jiménez-Martín, E. Maasoumi, T. Pérez-Amaral, A stochastic dominance approach to financial risk management strategies, J. Econom. 187 (2015) 472–485.
[14]
L. Chang, Partial order relations for classification comparisons, Can. J. Stat. 48 (2020) 152–166.
[15]
I. Couso, D. Dubois, Statistical reasoning with set-valued information: ontic vs. epistemic views, Int. J. Approx. Reason. 55 (2014) 1502–1518.
[16]
D. Critchlow, Metric Methods for Analyzing Partially Ranked Data, Lecture Notes in Statistics, vol. 34, Springer, 1985.
[17]
R. Davidson, On extending the Bradley-Terry model to accommodate ties in paired comparison experiments, J. Am. Stat. Assoc. 65 (1970) 317–328.
[18]
J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (2006) 1–30.
[19]
Dua, D.; Graff, C. (2017): Uci machine learning repository. http://archive.ics.uci.edu/ml.
[20]
J. Eckhoff, Chapter 2.1 - Helly, Radon, and Carathéodory type theorems, in: P. Gruber, J. Wwillis (Eds.), Handbook of Convex Geometry, North-Holland, Amsterdam, 1993, pp. 389–448.
[21]
M. Eugster, T. Hothorn, F. Leisch, Domain-based benchmark experiments: exploratory and inferential analysis, Austrian J. Stat. 41 (2012) 5–26.
[22]
M. Fligner, J. Verducci, Distance based ranking models, J. R. Stat. Soc., Ser. B, Methodol. 48 (1986) 359–369.
[23]
J. Friedman, T. Hastie, R. Tibshirani, B. Narasimhan, K. Tay, N. Simon, J. Qian, Package glmnet, CRAN R Repository, 2021.
[24]
B. Ganter, Two basic algorithms in concept analysis, in: Formal Concept Analysis: 8th International Conference, ICFCA 2010, Agadir, Morocco, March 15-18, 2010. Proceedings 8, Springer, 2010, pp. 312–340.
[25]
B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations, Springer, 2012.
[26]
Goibert, M.; Clémençon, S.; Irurozki, E.; Mozharovskyi, P. (2022): Statistical depth functions for ranking distributions: definitions, statistical learning and applications. arXiv:2201.08105.
[27]
K. Hechenbichler, K. Schliep, Weighted k-nearest-neighbor techniques and ordinal classification, Technical Report LMU, 2004, http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-1769-9.
[28]
T. Hothorn, F. Leisch, A. Zeileis, K. Hornik, The design and analysis of benchmark experiments, J. Comput. Graph. Stat. 14 (2005) 675–699.
[29]
C. Jansen, H. Blocher, T. Augustin, G. Schollmeyer, Information efficient learning of complexly structured preferences: elicitation procedures and their application to decision making under uncertainty, Int. J. Approx. Reason. 144 (2022) 69–91.
[30]
C. Jansen, M. Nalenz, G. Schollmeyer, T. Augustin, Statistical comparisons of classifiers by generalized stochastic dominance, J. Mach. Learn. Res. 24 (2023) 1–37.
[31]
C. Jansen, G. Schollmeyer, T. Augustin, Concepts for decision making under severe uncertainty with partial ordinal and partial cardinal preferences, Int. J. Approx. Reason. 98 (2018) 112–131.
[32]
C. Jansen, G. Schollmeyer, T. Augustin, A probabilistic evaluation framework for preference aggregation reflecting group homogeneity, Math. Soc. Sci. 96 (2018) 49–62.
[33]
C. Jansen, G. Schollmeyer, T. Augustin, Multi-target decision making under conditions of severe uncertainty, in: V. Torra, Y. Narukawa (Eds.), Modeling Decisions for Artificial Intelligence, Springer, 2023, pp. 45–57.
[34]
C. Jansen, G. Schollmeyer, H. Blocher, J. Rodemann, T. Augustin, Robust statistical comparison of random variables with locally varying scale of measurement, in: R.J. Evans, I. Shpitser (Eds.), Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, in: Proceedings of Machine Learning Research, 2023, pp. 941–952.
[35]
D. Kikuti, F. Cozman, R. Filho, Sequential decision making with partially ordered preferences, Artif. Intell. 175 (2011) 1346–1365.
[36]
G. Lebanon, Y. Mao, Non-parametric modeling of partially ranked data, J. Mach. Learn. Res. 9 (2008) 2401–2429.
[37]
H. Levy, A. Levy, Ordering uncertain options under inflation: a note, J. Finance 39 (1984) 1223–1229.
[38]
R. Liu, On a notion of data depth based on random simplices, Ann. Stat. 18 (1990) 405–414.
[39]
D. Mauá, F. Cozman, D. Conaty, C. Campos, Credal sum-product networks, in: A. Antonucci, G. Corani, I. Couso, S. Destercke (Eds.), Proceedings of the Tenth International Symposium on Imprecise Probability: Theories and Applications, in: Proceedings of Machine Learning Research, 2017, pp. 205–216.
[40]
K. Mosler, Multivariate Dispersion, Central Regions, and Depth: The Lift Zonoid Approach, Springer, 2002.
[41]
K. Mosler, P. Mozharovskyi, Choosing among notions of multivariate depth statistics, Stat. Sci. 37 (2022) 348–368.
[42]
Nakamura, K.; Yano, K.; Komaki, F. (2019): Learning partially ranked data based on graph regularization. arXiv:1902.10963.
[43]
M. Pini, F. Rossi, K. Venable, T. Walsh, Incompleteness and incomparability in preference aggregation: complexity results, Artif. Intell. 175 (2011) 1272–1289.
[44]
R. Plackett, The analysis of permutations, J. R. Stat. Soc., Ser. C, Appl. Stat. 24 (1975) 193–202.
[45]
J. Plass, T. Augustin, M. Cattaneo, G. Schollmeyer, Statistical modelling under epistemic data imprecision: some results on estimating multinomial distributions and logistic regression for coarse categorical data, in: T. Augustin, S. Doria, E. Miranda, E. Quaeghebeur (Eds.), Proceedings of the Ninth International Symposium on Imprecise Probability: Theories and Applications, Aracne, 2015, pp. 247–256.
[46]
J. Plass, P. Fink, N. Schöning, T. Augustin, Statistical modelling in surveys without neglecting the undecided: multinomial logistic regression models and imprecise classification trees under ontic data imprecision, in: T. Augustin, S. Doria, E. Miranda, E. Quaeghebeur (Eds.), Proceedings of the Ninth International Symposium on Imprecise Probability: Theories and Applications, Aracne, 2015, pp. 257–266.
[47]
P.V. Rao, L. Kupper, Ties in paired-comparison experiments: a generalization of the bradley-terry model, J. Am. Stat. Assoc. 62 (1967) 194–204.
[48]
G. Schollmeyer, Application of lower quantiles for complete lattices to ranking data: Analyzing outlyingness of preference orderings, Technical Report LMU, 2017, http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-40452-9.
[49]
G. Schollmeyer, Lower quantiles for complete lattices, Technical Report LMU, 2017, http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-40448-7.
[50]
G. Schollmeyer, A short note on the equivalence of the ontic and the epistemic view on data imprecision for the case of stochastic dominance for interval-valued data, in: J. De Bock, C. de Campos, G. de Cooman, E. Quaeghebeur, G. Wheeler (Eds.), Proceedings of the Eleventh International Symposium on Imprecise Probabilities: Theories and Applications, in: Proceedings of Machine Learning Research, 2019, pp. 330–337.
[51]
G. Schollmeyer, C. Jansen, T. Augustin, Detecting stochastic dominance for poset-valued random variables as an example of linear programming on closure systems, Technical Report LMU, 2017, http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-40416-0.
[52]
T. Seidenfeld, J. Kadane, M. Schervish, A representation of partially ordered preferences, Ann. Stat. 23 (1995) 2168–2217.
[53]
C.D. Sinclair, Glim for preference, in: R. Gilchrist (Ed.), GLIM 82: Proceedings of the International Conference on Generalised Linear Models, Springer, 1982, pp. 164–178.
[54]
J. Stoye, Statistical inference for interval identified parameters, in: T. Augustin, F. Coolen, S. Moral, M. Troffaes (Eds.), Proceedings of the Sixth International Symposium on Imprecise Probabilities: Theories and Applications, Aracne, 2009, pp. 395–404.
[55]
Therneau, T.; Atkinson, B.; Ripley, B. (2015): Package rpart. http://cran.ma.ic.ac.uk/web/packages/rpart/rpart.pdf.
[56]
W. Trotter, Dimension of the crown skn, Discrete Math. 8 (1974) 85–103.
[57]
J. Tukey, Mathematics and the picturing of data, in: R. James (Ed.), Proceedings of the International Congress of Mathematicians Vancouver, Mathematics-Congresses, Vancouver, 1975, pp. 523–531.
[58]
J. Vanschoren, J. van Rijn, B. Bischl, L. Torgo, Openml: networked science in machine learning, SIGKDD Explor. 15 (2013) 49–60.
[59]
V. Vapnik, A. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, in: V. Vovk, H. Papadopoulos, A. Gammerman (Eds.), Measures of Complexity: Festschrift for Alexey Chervonenkis, Springer, 2015, pp. 11–30.
[60]
S. Varma, R. Simon, Bias in error estimation when using cross-validation for model selection, BMC Bioinform. 7 (2006) 1–8.
[61]
M. Wright, A. Ziegler, ranger: a fast implementation of random forests for high dimensional data in C++ and R, J. Stat. Softw. 77 (2017) 1–17.
[62]
M. Zaffalon, The naive credal classifier, J. Stat. Plan. Inference 105 (2002) 5–21.
[63]
M. Zaffalon, G. Corani, D. Mauá, Evaluating credal classifiers by utility-discounted predictive accuracy, Int. J. Approx. Reason. 53 (2012) 1282–1301.
[64]
Y. Zuo, R. Serfling, General notions of statistical depth function, Ann. Stat. 28 (2000) 461–482.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Approximate Reasoning
International Journal of Approximate Reasoning  Volume 169, Issue C
Jun 2024
276 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 09 July 2024

Author Tags

  1. Partial orders
  2. Data depth
  3. Benchmarking
  4. Algorithm comparison
  5. Outlier detection
  6. Non-standard data

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 17 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media