Comparing machine learning algorithms by union-free generic depth
References
[1]
W. Armstrong, Dependency structures of data base relationships, in: International Federation for Information Processing Congress 74, 1974, pp. 580–583.
[2]
R. Baker, P. Scarf, Modifying Bradley–Terry and other ranking models to allow ties, IMA J. Manag. Math. 32 (2021) 451–463.
[3]
Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, L. Lakhal, Mining minimal non-redundant association rules using frequent closed itemsets, in: J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K. Lau, C. Palamidessi, L. Pereira, Y. Sagiv, P. Stuckey (Eds.), Computational Logic — CL 2000, Springer, 2000, pp. 972–986.
[4]
A. Benavoli, G. Corani, F. Mangili, Should we really use post-hoc tests based on mean-ranks?, J. Mach. Learn. Res. 17 (2016) 152–161.
[5]
K. Bertet, C. Demko, J. Viaud, C. Guérin, Lattices, closures systems and implication bases: a survey of structural aspects and algorithms, Theor. Comput. Sci. 743 (2018) 93–109.
[6]
Blocher, H.; Schollmeyer, G. (2023): Data depth functions for non-standard data by use of formal concept analysis. https://www.foundstat.statistik.uni-muenchen.de/personen/mitglieder/blocher/blocheretal_properties23.pdf.
[7]
H. Blocher, G. Schollmeyer, C. Jansen, Statistical models for partial orders based on data depth and formal concept analysis, in: D. Ciucci, I. Couso, J. Medina, D. Slezak, D. Petturiti, B. Bouchon-Meunier, R. Yager (Eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems, Springer, 2022, pp. 17–30.
[8]
H. Blocher, G. Schollmeyer, C. Jansen, M. Nalenz, Depth functions for partial orders with a descriptive analysis of machine learning algorithms, in: E. Miranda, I. Montes, E. Quaeghebeur, B. Vantaggi (Eds.), Proceedings of the Thirteenth International Symposium on Imprecise Probability: Theories and Applications, in: Proceedings of Machine Learning Research, 2023, pp. 59–71.
[9]
R. Bradley, M. Terry, Rank analysis of incomplete block designs: I. The method of paired comparisons, Biometrika 39 (1952) 324–345.
[10]
F. Brandenburg, A. Gleißner, A. Hofmeier, Comparing and aggregating partial orders with Kendall tau distances, in: S. Rahman, S. Nakano (Eds.), WALCOM: Algorithms and Computation 2012, in: Lecture Notes in Computer Science, 2012, pp. 88–99.
[11]
G. Cawley, N. Talbot, On over-fitting in model selection and subsequent selection bias in performance evaluation, J. Mach. Learn. Res. 11 (2010) 2079–2107.
[12]
C. Chambers, F. Echenique, Stochastic choice, in: Revealed Preference Theory, in: Econometric Society Monographs, Cambridge University Press, 2016, pp. 95–113.
[13]
C. Chang, J. Jiménez-Martín, E. Maasoumi, T. Pérez-Amaral, A stochastic dominance approach to financial risk management strategies, J. Econom. 187 (2015) 472–485.
[14]
L. Chang, Partial order relations for classification comparisons, Can. J. Stat. 48 (2020) 152–166.
[15]
I. Couso, D. Dubois, Statistical reasoning with set-valued information: ontic vs. epistemic views, Int. J. Approx. Reason. 55 (2014) 1502–1518.
[16]
D. Critchlow, Metric Methods for Analyzing Partially Ranked Data, Lecture Notes in Statistics, vol. 34, Springer, 1985.
[17]
R. Davidson, On extending the Bradley-Terry model to accommodate ties in paired comparison experiments, J. Am. Stat. Assoc. 65 (1970) 317–328.
[18]
J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (2006) 1–30.
[19]
Dua, D.; Graff, C. (2017): Uci machine learning repository. http://archive.ics.uci.edu/ml.
[20]
J. Eckhoff, Chapter 2.1 - Helly, Radon, and Carathéodory type theorems, in: P. Gruber, J. Wwillis (Eds.), Handbook of Convex Geometry, North-Holland, Amsterdam, 1993, pp. 389–448.
[21]
M. Eugster, T. Hothorn, F. Leisch, Domain-based benchmark experiments: exploratory and inferential analysis, Austrian J. Stat. 41 (2012) 5–26.
[22]
M. Fligner, J. Verducci, Distance based ranking models, J. R. Stat. Soc., Ser. B, Methodol. 48 (1986) 359–369.
[23]
J. Friedman, T. Hastie, R. Tibshirani, B. Narasimhan, K. Tay, N. Simon, J. Qian, Package glmnet, CRAN R Repository, 2021.
[24]
B. Ganter, Two basic algorithms in concept analysis, in: Formal Concept Analysis: 8th International Conference, ICFCA 2010, Agadir, Morocco, March 15-18, 2010. Proceedings 8, Springer, 2010, pp. 312–340.
[25]
B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations, Springer, 2012.
[26]
Goibert, M.; Clémençon, S.; Irurozki, E.; Mozharovskyi, P. (2022): Statistical depth functions for ranking distributions: definitions, statistical learning and applications. arXiv:2201.08105.
[27]
K. Hechenbichler, K. Schliep, Weighted k-nearest-neighbor techniques and ordinal classification, Technical Report LMU, 2004, http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-1769-9.
[28]
T. Hothorn, F. Leisch, A. Zeileis, K. Hornik, The design and analysis of benchmark experiments, J. Comput. Graph. Stat. 14 (2005) 675–699.
[29]
C. Jansen, H. Blocher, T. Augustin, G. Schollmeyer, Information efficient learning of complexly structured preferences: elicitation procedures and their application to decision making under uncertainty, Int. J. Approx. Reason. 144 (2022) 69–91.
[30]
C. Jansen, M. Nalenz, G. Schollmeyer, T. Augustin, Statistical comparisons of classifiers by generalized stochastic dominance, J. Mach. Learn. Res. 24 (2023) 1–37.
[31]
C. Jansen, G. Schollmeyer, T. Augustin, Concepts for decision making under severe uncertainty with partial ordinal and partial cardinal preferences, Int. J. Approx. Reason. 98 (2018) 112–131.
[32]
C. Jansen, G. Schollmeyer, T. Augustin, A probabilistic evaluation framework for preference aggregation reflecting group homogeneity, Math. Soc. Sci. 96 (2018) 49–62.
[33]
C. Jansen, G. Schollmeyer, T. Augustin, Multi-target decision making under conditions of severe uncertainty, in: V. Torra, Y. Narukawa (Eds.), Modeling Decisions for Artificial Intelligence, Springer, 2023, pp. 45–57.
[34]
C. Jansen, G. Schollmeyer, H. Blocher, J. Rodemann, T. Augustin, Robust statistical comparison of random variables with locally varying scale of measurement, in: R.J. Evans, I. Shpitser (Eds.), Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, in: Proceedings of Machine Learning Research, 2023, pp. 941–952.
[35]
D. Kikuti, F. Cozman, R. Filho, Sequential decision making with partially ordered preferences, Artif. Intell. 175 (2011) 1346–1365.
[36]
G. Lebanon, Y. Mao, Non-parametric modeling of partially ranked data, J. Mach. Learn. Res. 9 (2008) 2401–2429.
[37]
H. Levy, A. Levy, Ordering uncertain options under inflation: a note, J. Finance 39 (1984) 1223–1229.
[38]
R. Liu, On a notion of data depth based on random simplices, Ann. Stat. 18 (1990) 405–414.
[39]
D. Mauá, F. Cozman, D. Conaty, C. Campos, Credal sum-product networks, in: A. Antonucci, G. Corani, I. Couso, S. Destercke (Eds.), Proceedings of the Tenth International Symposium on Imprecise Probability: Theories and Applications, in: Proceedings of Machine Learning Research, 2017, pp. 205–216.
[40]
K. Mosler, Multivariate Dispersion, Central Regions, and Depth: The Lift Zonoid Approach, Springer, 2002.
[41]
K. Mosler, P. Mozharovskyi, Choosing among notions of multivariate depth statistics, Stat. Sci. 37 (2022) 348–368.
[42]
Nakamura, K.; Yano, K.; Komaki, F. (2019): Learning partially ranked data based on graph regularization. arXiv:1902.10963.
[43]
M. Pini, F. Rossi, K. Venable, T. Walsh, Incompleteness and incomparability in preference aggregation: complexity results, Artif. Intell. 175 (2011) 1272–1289.
[44]
R. Plackett, The analysis of permutations, J. R. Stat. Soc., Ser. C, Appl. Stat. 24 (1975) 193–202.
[45]
J. Plass, T. Augustin, M. Cattaneo, G. Schollmeyer, Statistical modelling under epistemic data imprecision: some results on estimating multinomial distributions and logistic regression for coarse categorical data, in: T. Augustin, S. Doria, E. Miranda, E. Quaeghebeur (Eds.), Proceedings of the Ninth International Symposium on Imprecise Probability: Theories and Applications, Aracne, 2015, pp. 247–256.
[46]
J. Plass, P. Fink, N. Schöning, T. Augustin, Statistical modelling in surveys without neglecting the undecided: multinomial logistic regression models and imprecise classification trees under ontic data imprecision, in: T. Augustin, S. Doria, E. Miranda, E. Quaeghebeur (Eds.), Proceedings of the Ninth International Symposium on Imprecise Probability: Theories and Applications, Aracne, 2015, pp. 257–266.
[47]
P.V. Rao, L. Kupper, Ties in paired-comparison experiments: a generalization of the bradley-terry model, J. Am. Stat. Assoc. 62 (1967) 194–204.
[48]
G. Schollmeyer, Application of lower quantiles for complete lattices to ranking data: Analyzing outlyingness of preference orderings, Technical Report LMU, 2017, http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-40452-9.
[49]
G. Schollmeyer, Lower quantiles for complete lattices, Technical Report LMU, 2017, http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-40448-7.
[50]
G. Schollmeyer, A short note on the equivalence of the ontic and the epistemic view on data imprecision for the case of stochastic dominance for interval-valued data, in: J. De Bock, C. de Campos, G. de Cooman, E. Quaeghebeur, G. Wheeler (Eds.), Proceedings of the Eleventh International Symposium on Imprecise Probabilities: Theories and Applications, in: Proceedings of Machine Learning Research, 2019, pp. 330–337.
[51]
G. Schollmeyer, C. Jansen, T. Augustin, Detecting stochastic dominance for poset-valued random variables as an example of linear programming on closure systems, Technical Report LMU, 2017, http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-40416-0.
[52]
T. Seidenfeld, J. Kadane, M. Schervish, A representation of partially ordered preferences, Ann. Stat. 23 (1995) 2168–2217.
[53]
C.D. Sinclair, Glim for preference, in: R. Gilchrist (Ed.), GLIM 82: Proceedings of the International Conference on Generalised Linear Models, Springer, 1982, pp. 164–178.
[54]
J. Stoye, Statistical inference for interval identified parameters, in: T. Augustin, F. Coolen, S. Moral, M. Troffaes (Eds.), Proceedings of the Sixth International Symposium on Imprecise Probabilities: Theories and Applications, Aracne, 2009, pp. 395–404.
[55]
Therneau, T.; Atkinson, B.; Ripley, B. (2015): Package rpart. http://cran.ma.ic.ac.uk/web/packages/rpart/rpart.pdf.
[56]
W. Trotter, Dimension of the crown skn, Discrete Math. 8 (1974) 85–103.
[57]
J. Tukey, Mathematics and the picturing of data, in: R. James (Ed.), Proceedings of the International Congress of Mathematicians Vancouver, Mathematics-Congresses, Vancouver, 1975, pp. 523–531.
[58]
J. Vanschoren, J. van Rijn, B. Bischl, L. Torgo, Openml: networked science in machine learning, SIGKDD Explor. 15 (2013) 49–60.
[59]
V. Vapnik, A. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, in: V. Vovk, H. Papadopoulos, A. Gammerman (Eds.), Measures of Complexity: Festschrift for Alexey Chervonenkis, Springer, 2015, pp. 11–30.
[60]
S. Varma, R. Simon, Bias in error estimation when using cross-validation for model selection, BMC Bioinform. 7 (2006) 1–8.
[61]
M. Wright, A. Ziegler, ranger: a fast implementation of random forests for high dimensional data in C++ and R, J. Stat. Softw. 77 (2017) 1–17.
[62]
M. Zaffalon, The naive credal classifier, J. Stat. Plan. Inference 105 (2002) 5–21.
[63]
M. Zaffalon, G. Corani, D. Mauá, Evaluating credal classifiers by utility-discounted predictive accuracy, Int. J. Approx. Reason. 53 (2012) 1282–1301.
[64]
Y. Zuo, R. Serfling, General notions of statistical depth function, Ann. Stat. 28 (2000) 461–482.
Recommendations
A proof of the Oja depth conjecture in the plane
Given a set P of n points in the plane, the Oja depth of a point x R 2 is defined to be the sum of the areas of all triangles defined by x and two points from P, normalized with respect to the area of the convex hull of P. The Oja depth of P is the ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
The Authors.
Publisher
Elsevier Science Inc.
United States
Publication History
Published: 09 July 2024
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 17 Nov 2024
Other Metrics
Citations
Cited By
View allView Options
View options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in