Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

The parameterised complexity of list problems on graphs of bounded treewidth

Published: 01 December 2016 Publication History

Abstract

We consider the parameterised complexity of several list problems on graphs, with parameter treewidth or pathwidth. In particular, we show that List Edge Chromatic Number and List Total Chromatic Number are fixed parameter tractable, parameterised by treewidth, whereas List Hamilton Path is W1-hard, even parameterised by pathwidth. These results resolve two open questions of Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider and Thomassen (2011).

References

[1]
Alon Noga, Restricted colorings of graphs, in: London Mathematical Society Lecture Note Series, vol. 187, Cambridge University Press, 1993, pp. 1-33.
[2]
Stefan Arnborg, Andrzej Proskurowski, Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Appl. Math., 23 (1989) 11-24.
[3]
M. Behzad, Graphs and their chromatic numbers, Michigan State University, 1965.
[4]
Hans L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput., 25 (1996) 1305-1317.
[5]
B. Bollobás, A. Harris, List-colourings of graphs, Graphs Comb., 1 (1985) 115-127.
[6]
Richard B. Borie, R. Gary Parker, Craig A. Tovey, Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families, Algorithmica, 7 (1992) 555-581.
[7]
O.V. Borodin, A.V. Kostochka, D.R. Woodall, List edge and list total colourings of multigraphs, J. Comb. Theory, Ser. B, 71 (1997) 184-204.
[8]
Henning Bruhn, Richard Lang, Maya Stein, List edge-coloring and total coloring in graphs of low treewidth, J. Graph Theory, 81 (2016) 272-282.
[9]
Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David Juedes, Iyad A. Kanj, Ge Xia, Tight lower bounds for certain parameterized NP-hard problems, Inf. Comput., 201 (2005) 216-231.
[10]
B. Courcelle, The monadic second-order logic of graphs I: recognizable sets of finite graphs, Inf. Comput., 85 (1990) 12-75.
[11]
Gruia C¿linescu, Cristina G. Fernandes, Bruce Reed, Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width, J. Algorithms, 48 (2003) 333-359.
[12]
Rodney G. Downey, Michael R. Fellows, Fundamentals of Parameterized Complexity, Springer, 2013.
[13]
M. Fellows, D. Hermelin, F. Rosamond, S. Vialette, On the fixed-parameter intractability and tractability of multiple-interval graph properties, Theor. Comput. Sci., 410 (2009) 53-61.
[14]
Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances Rosamond, Saket Saurabh, Stefan Szeider, Carsten Thomassen, On the complexity of some colorful problems parameterized by treewidth, Inf. Comput., 209 (2011) 143-153.
[15]
J. Flum, M. Grohe, Parameterized Complexity Theory, Springer, 2006.
[16]
F. Galvin, The list chromatic index of a bipartite multigraph, J. Comb. Theory, Ser. B, 63 (1995) 153-158.
[17]
M.R. Garey, D.S. Johnson, R. Endre Tarjan, The planar Hamilton circuit problem is NP-complete, SIAM J. Comput., 5 (1976) 704-714.
[18]
Roland Häggkvist, Amanda Chetwynd, Some upper bounds on the total and list chromatic numbers of multigraphs, J. Graph Theory, 16 (1992) 503-516.
[19]
Ian Holyer, The NP-completeness of edge-coloring, SIAM J. Comput., 10 (1981) 718-720.
[20]
Shuji Isobe, Xiao Zhou, Takao Nishizeki, Total colourings of degenerate graphs, Combinatorica, 27 (2007) 167-182.
[21]
Klaus Jansen, Petra Scheffler, Generalized coloring for tree-like graphs, Discrete Appl. Math., 75 (1997) 135-155.
[22]
Jeff Kahn, Asymptotics of the chromatic index for multigraphs, J. Comb. Theory, Ser. B, 68 (1996) 233-254.
[23]
M.S. Krishnamoorthy, An NP-hard problem in bipartite graphs, SIGACT News, 7 (1975) 26.
[24]
Daniel Leven, Zvi Galil, NP completeness of finding the chromatic index of regular graphs, J. Algorithms, 4 (1983) 35-44.
[25]
Daniel Lokshtanov, Dániel Marx, Saket Saurabh, Lower bounds based on the exponential time hypothesis, Bull. Eur. Assoc. Theor. Comput. Sci., 3 (2013).
[26]
Dániel Marx, NP-completeness of list coloring and precoloring extension on the edges of planar graphs, J. Graph Theory, 49 (2005) 313-324.
[27]
Colin J.H. McDiarmid, Abdón Sánchez-Arroyo, Total colouring regular bipartite graphs is NP-hard, Discrete Math., 124 (1994) 155-162.
[28]
D. Seese, Tree-partite graphs and the complexity of algorithms, in: Lecture Notes in Computer Science, vol. 199, Springer, Berlin/Heidelberg, 1985, pp. 412-421.
[29]
V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskretn. Anal., 3 (1964) 25-30.
[30]
V.G. Vizing, Some unsolved problems in graph theory, Usp. Mat. Nauk, 23 (1968) 117-134.
[31]
Xiao Zhou, Yuki Matsuo, Takao Nishizeki, List total colorings of series-parallel graphs, J. Discret. Algorithms, 3 (2005) 47-60.
[32]
Xiao Zhou, Shin-ichi Nakano, Takao Nishizeki, Edge-colouring partial k-trees, J. Algorithms, 21 (1996) 598-617.

Cited By

View all
  • (2023)On the Linear Arboricity of Graphs with Treewidth at Most FourGraphs and Combinatorics10.1007/s00373-023-02673-539:4Online publication date: 19-Jun-2023
  • (2022)Exploring the gap between treedepth and vertex cover through vertex integrityTheoretical Computer Science10.1016/j.tcs.2022.03.021918:C(60-76)Online publication date: 29-May-2022
  1. The parameterised complexity of list problems on graphs of bounded treewidth

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Information and Computation
        Information and Computation  Volume 251, Issue C
        December 2016
        363 pages

        Publisher

        Academic Press, Inc.

        United States

        Publication History

        Published: 01 December 2016

        Author Tags

        1. Bounded treewidth
        2. Graph colouring
        3. Hamilton path
        4. List colouring
        5. Parameterised complexity

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 17 Feb 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2023)On the Linear Arboricity of Graphs with Treewidth at Most FourGraphs and Combinatorics10.1007/s00373-023-02673-539:4Online publication date: 19-Jun-2023
        • (2022)Exploring the gap between treedepth and vertex cover through vertex integrityTheoretical Computer Science10.1016/j.tcs.2022.03.021918:C(60-76)Online publication date: 29-May-2022

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media