Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Limitations of lower bound methods for deterministic nested word automata

Published: 01 March 2011 Publication History

Abstract

Finite automata operating on nested words were introduced by Alur and Madhusudan in 2006. While nested word automata retain many of the desirable properties of ordinary finite automata, there is no known efficient minimization algorithm for deterministic nested word automata and, interestingly, state complexity bounds for nested word automata turn out to differ significantly from the corresponding bounds for ordinary finite automata. Consequently lower bounds for the state complexity of nested word languages need to rely on fooling set type techniques. We discuss limitations of the techniques and show that, even in the deterministic case, the bounds given by the lower bound methods may be arbitrarily far away from the actual state complexity of the nested word language.

References

[1]
Congruences for visibly pushdown languages. In: Lect. Notes Comput. Sci., vol. 3580. Springer. pp. 1102-1114.
[2]
Alur, R. and Madhusudan, P., Adding nesting structure to words. In: Ibarra, O.H., Dang, Z. (Eds.), Lect. Notes Comput. Sci., vol. 4036. Springer. pp. 1-13.
[3]
Alur, R. and Madhusudan, P., Adding nesting structure to words. J. Assoc. Comput. Mach. v56 i3.
[4]
Arenas, M., Barceló, P. and Libkin, L., Regular languages of nested words: Fixed points, automata and synchronization. In: Lect. Notes Comput. Sci., vol. 4596. Springer. pp. 888-900.
[5]
Birget, J.-C., Intersection and union of regular languages and state complexity. Inform. Process. Lett. v43. 185-190.
[6]
Chervet, P. and Walukiewicz, I., Minimizing variants of visibly pushdown automata. In: Lect. Notes Comput. Sci., vol. 4708. Springer. pp. 135-146.
[7]
Champavère, J., Gilleron, R., Lemay, A. and Niehren, J., Efficient inclusion checking for deterministic tree automata and XML schemas. Inform. Comput. 1181-1208.
[8]
H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison, M. Tommasi, Tree Automata Techniques and Applications, 2007, Electronic book available from: <tata.gforge.inria.fr>.
[9]
Domaratzki, M. and Salomaa, K., Lower bounds for the transition complexity of NFAs. J. Comput. System Sci. v74. 1116-1130.
[10]
Gauwin, O., Niehren, J. and Roos, Y., Streaming tree automata. Inform. Process. Lett. v109. 13-17.
[11]
F. Gécseg, M. Steinby, Tree languages, in: {30}, vol. III, pp. 1--68.
[12]
Gruber, H. and Holzer, M., Finding lower bounds for the nondeterministic state complexity is hard. In: Ibarra, O.H., Dang, Z. (Eds.), Lect. Notes Comput. Sci., vol. 4036. Springer. pp. 363-374.
[13]
H. Gruber, M. Holzer, Finding lower bounds for the nondeterministic state complexity is hard, Electronic Colloquium on Computational Complexity, Report No. 27, 2006 (full version of {12}).
[14]
Gruber, H. and Holzer, M., Inapproximability of nondeterministic state and transition complexity assuming P≠NP. In: Harju, T., Karhumäki, J., Lepistö, A. (Eds.), Lect. Notes Comput. Sci., vol. 4588. Springer-Verlag. pp. 205-216.
[15]
Han, Y.-S. and Salomaa, K., Nondeterministic state complexity of nested word automata. Theoret. Comput. Sci. v410. 2961-2971.
[16]
Holzer, M. and Kutrib, M., Nondeterministic descriptional complexity of regular languages. Internat. J. Found. Comput. Sci. v14. 1087-1102.
[17]
Holzer, M. and Kutrib, M., Nondeterministic finite automata -- recent results on the descriptional and computational complexity. In: Ibarra, O.H., Revikumar, B. (Eds.), Lect. Notes Comput. Sci., vol. 5148. Springer. pp. 1-16.
[18]
Holzer, M. and Kutrib, M., Descriptional and computational complexity of finite automata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (Eds.), Lect. Notes Comput. Sci., vol. 5457. Springer. pp. 23-42.
[19]
Hromkovič, J., Communication Complexity and Parallel Computing. 1997. Springer-Verlag.
[20]
Hromkovič, J., Petersen, H. and Schnitger, G., On the limits of the communication complexity technique for proving lower bounds on the size of minimal NFAs. Theoret. Comput. Sci. v410. 2972-2981.
[21]
Jirásková, G., Note on minimal automata and uniform communication protocols. In: Martín-Vide, C., Mitrana, V. (Eds.), Topics in Computer Mathematics, vol. 9. Taylor &amp; Francis. pp. 163-170.
[22]
Jirásková, G., State complexity of some operations on binary regular languages. Theoret. Comput. Sci. v330. 287-298.
[23]
Kameda, T. and Weiner, P., On the state minimization of nondeterministic finite automata. IEEE Trans. Computers. vC-19 i7. 617-627.
[24]
Kumar, V., Madhusudan, P. and Viswanathan, M., Minimization, learning, and conformance testing of Boolean programs. In: Lect. Notes Comput. Sci., vol. 4137. Springer. pp. 203-217.
[25]
Liu, G., Martin-Vide, C., Salomaa, A. and Yu, S., The state-complexity of two combined operations: Star of catenation and star of reversal. Inform. Comput. v206. 1178-1186.
[26]
Piao, X. and Salomaa, K., Operational state complexity of nested word automata. Theoret. Comput. Sci. v410. 3290-3302.
[27]
X. Piao, K. Salomaa, Transformations between different types of bottom-up unranked tree automata, in: I. McQuillan, G. Pighizzini, B. Trost (Eds.), Proc. 12th International Workshop Descriptional Complexity of Formal Systems, DCFS 2010, Saskatoon, Canada, 2010, pp. 193--204.
[28]
Neumann, A. and Seidl, H., Locating matches of tree patterns in forests. In: Lect. Notes Comput. Sci., vol. 1530. Springer. pp. 134-146.
[29]
H. Nguyen, VPAlib: Visibly pushdown automata library, 2006. Available from: <http://www.emn.fr/x-info/hnguyen/vpa>.
[30]
. In: Rozenberg, G., Salomaa, A. (Eds.), Handbook of Formal Languages, vols. I--III. Springer-Verlag.
[31]
Salomaa, K., State complexity of nested word automata. In: Dediu, A.H., Ionescu, A.M., Martin-Vide, C. (Eds.), Lect. Notes Comput. Sci., vol. 5457. Springer. pp. 59-70.
[32]
Shallit, J., A Second Course in Formal Languages and Automata Theory. 2009. Cambridge University Press.
[33]
S. Yu, Grail+: A symbolic computation environment for finite-state machines, regular expressions and finite languages, 2002, Available from: <http://www.csd.uwo.ca/Research/grail>.
[34]
S. Yu, Regular languages, in: {30}, vol. I, pp. 41--110.

Cited By

View all
  1. Limitations of lower bound methods for deterministic nested word automata

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Information and Computation
    Information and Computation  Volume 209, Issue 3
    March, 2011
    378 pages

    Publisher

    Academic Press, Inc.

    United States

    Publication History

    Published: 01 March 2011

    Author Tags

    1. Finite automata
    2. Fooling set methods
    3. Nested words
    4. State complexity

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 29 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2019)Descriptional complexity of unambiguous input-driven pushdown automataTheoretical Computer Science10.1016/j.tcs.2014.11.015566:C(1-11)Online publication date: 6-Jan-2019
    • (2018)Further Closure Properties of Input-Driven Pushdown AutomataDescriptional Complexity of Formal Systems10.1007/978-3-319-94631-3_19(224-236)Online publication date: 25-Jul-2018
    • (2017)State complexity of operations on input-driven pushdown automataJournal of Computer and System Sciences10.1016/j.jcss.2017.02.00186:C(207-228)Online publication date: 1-Jun-2017
    • (2014)Complexity of input-driven pushdown automataACM SIGACT News10.1145/2636805.263682145:2(47-67)Online publication date: 9-Jun-2014
    • (2011)State complexity of operations on input-driven pushdown automataProceedings of the 36th international conference on Mathematical foundations of computer science10.5555/2034006.2034052(485-496)Online publication date: 22-Aug-2011
    • (2011)Descriptional complexity of unambiguous nested word automataProceedings of the 5th international conference on Language and automata theory and applications10.5555/2022896.2022931(414-426)Online publication date: 26-May-2011

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media