Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Role-aware random walk for network embedding

Published: 01 January 2024 Publication History

Abstract

Network embedding is a fundamental part of many network analysis tasks, including node classification and link prediction. The existing random walk-based embedding methods aim to learn node embedding that preserves information on either node proximity or structural similarity. However, the information on both role and community is important to network nodes. To address the shortcomings of the existing methods, this paper proposes a novel method for network embedding called the RARE, which can be used for the analysis of different types of networks and even disconnected networks. The proposed method uses the role and community information of nodes to preserve both node proximity and structural similarity in the learned node embeddings. The walks generated through the role-aware random walk can capture the role and community information of nodes. The obtained walks are input to the Skip-gram model to learn the final embedding of nodes. In addition, the RARE is extended to the CRARE that adds the sampling of high-order community members to the customized random walk so that the node’s representation can preserve more structural information of the network. The performances of the proposed methods are evaluated on multi-class node classification, link prediction, and network visualization tasks. Experimental results on different domain datasets indicate that the proposed methods outperform the baseline methods. The proposed methods can be further accelerated using parallelization in the random walk generation process. The source code: https://github.com/HeguiZhang/RARE.

References

[1]
P. Jia, J. Kou, J. Liu, J. Dai, H. Luo, SRFA-GRL: Predicting group influence in social networks with graph representation learning, Inf. Sci. 638 (2023).
[2]
H. Zhang, X. Chen, Y. Peng, G. Kou, R. Wang, The interaction of multiple information on multiplex social networks, Inf. Sci. 605 (2022) 366–380.
[3]
S. Cao, L. Wu, J. Wu, D. Wu, Q. Li, A spatio-temporal sequence-to-sequence network for traffic flow prediction, Inf. Sci. 610 (2022) 185–203.
[4]
M. Park, E. Leahey, R.J. Funk, Papers and patents are becoming less disruptive over time, Nature 613 (7942) (2023) 138–144.
[5]
D.M. Camacho, K.M. Collins, R.K. Powers, J.C. Costello, J.J. Collins, Next-generation machine learning for biological networks, Cell 173 (7) (2018) 1581–1592.
[6]
S. Wang, Y. Pan, J. Zhang, X. Zhou, Z. Cui, G. Hu, Z. Pan, Robust and label efficient bi-filtering graph convolutional networks for node classification, Knowl.-Based Syst. 224 (2021) 106891.
[7]
A. Kumar, S.S. Singh, K. Singh, B. Biswas, Link prediction techniques, applications, and performance: A survey, Phys. Stat. Mech. Appl. 553 (2020).
[8]
W. Gu, A. Tandon, Y.-Y. Ahn, F. Radicchi, Principled approach to the selection of the embedding dimension of networks, Nat. Commun. 12 (2021) 3772.
[9]
Z. Duan, X. Sun, S. Zhao, J. Chen, Y. Zhang, J. Tang, Hierarchical community structure preserving approach for network embedding, Inf. Sci. 546 (2021) 1084–1096.
[10]
Z. Shen, X. Guo, B. Feng, H. Cheng, S. Ni, H. Dong, Adversarial learning based residual variational graph normalized autoencoder for network representation, Inf. Sci. 640 (2023).
[11]
Y. Fu, X. Yu, Y. Wu, X. Ding, S. Zhao, Robust representation learning for heterogeneous attributed networks, Inf. Sci. 628 (2023) 22–49.
[12]
D. Zhang, J. Yin, X. Zhu, C. Zhang, Network representation learning: A survey, IEEE Trans. Big Data 6 (1) (2020) 3–28.
[13]
J. Chen, Z. Gong, W. Wang, W. Liu, HNS: Hierarchical negative sampling for network representation learning, Inf. Sci. 542 (2021) 343–356.
[14]
R.A. Rossi, D. Jin, S. Kim, N.K. Ahmed, D. Koutra, J.B. Lee, On proximity and structural role-based embeddings in networks: Misconceptions, techniques, and applications, ACM Trans. Knowl. Discov. Data 14 (2020).
[15]
B. Perozzi, R. Al-Rfou, S. Skiena, DeepWalk: Online learning of social representations, in: Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., Association for Computing Machinery, New York, NY, USA, 2014: pp. 701–710.
[16]
A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2016: pp. 855–864.
[17]
J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, LINE: Large-scale information network embedding, in: Proc. 24th Int. Conf. World Wide Web, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 2015: pp. 1067–1077.
[18]
M.M. Keikha, M. Rahgozar, M. Asadpour, Community aware random walk for network embedding, Knowl.-Based Syst. 148 (2018) 47–54.
[19]
R.A. Rossi, N.K. Ahmed, Role discovery in networks, IEEE Trans. Knowl. Data Eng. 27 (4) (2015) 1112–1131.
[20]
W. Zhang, X. Guo, W. Wang, Q. Tian, L. Pan, P. Jiao, Role-based network embedding via structural features reconstruction with degree-regularized constraint, Knowl.-Based Syst. 218 (2021) 106872.
[21]
N. Ahmed, R.A. Rossi, J. Lee, T. Willke, R. Zhou, X. Kong, H. Eldardiry, Role-based graph embeddings, IEEE Trans. Knowl. Data Eng. 1–1 (2020).
[22]
B. Rozemberczki, R. Sarkar, Fast sequence-based embedding with diffusion graphs, in: S. Cornelius, K. Coronges, B. Gonçalves, R. Sinatra, A. Vespignani (Eds.), Complex Netw, Springer International Publishing, Cham, IX, 2018, pp. 99–107.
[23]
D. Yang, P. Rosso, B. Li, P. Cudre-Mauroux, NodeSketch: Highly-Efficient Graph Embeddings via Recursive Sketching, in: Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., ACM, Anchorage AK USA, 2019: pp. 1162–1172.
[24]
V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech: Theory Exp. 2008 (2008).
[25]
B. Rozemberczki, R. Davies, R. Sarkar, C. Sutton, Gemsec: Graph embedding with self clustering, in: Proc. 2019 IEEEACM Int. Conf. Adv. Soc. Netw. Anal. Min., 2019: pp. 65–72.
[26]
C. Tu, X. Zeng, H. Wang, Z. Zhang, Z. Liu, M. Sun, B. Zhang, L. Lin, A unified framework for community detection and network representation learning, IEEE Trans. Knowl. Data Eng. 31 (6) (2019) 1051–1065.
[27]
X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, S. Yang, Community preserving network embedding, in: Thirty-First AAAI Conf. Artif. Intell., 2017.
[28]
A. Javari, T. Derr, P. Esmailian, J. Tang, K.C.-C. Chang, Rose: Role-based signed network embedding, in: Proc. Web Conf. 2020, 2020: pp. 2782–2788.
[29]
X. Ma, G. Qin, Z. Qiu, M. Zheng, Z. Wang, RiWalk: fast structural node embedding via role identification, in: 2019 IEEE Int. Conf. Data Min. ICDM, IEEE, 2019: pp. 478–487.
[30]
K. Tu, P. Cui, X. Wang, P.S. Yu, W. Zhu, Deep Recursive Network Embedding with Regular Equivalence, in: Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., ACM, London United Kingdom, 2018: pp. 2357–2366.
[31]
G. Nikolentzos, M. Vazirgiannis, Learning structural node representations using graph kernels, IEEE Trans. Knowl. Data Eng. 33 (2021) 2045–2056.
[32]
N. Shervashidze, K.M. Borgwardt, Fast subtree kernels on graphs, in: NIPS, 2009: pp. 1660–1668.
[33]
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, ArXiv Prepr. ArXiv13104546. (2013).
[34]
T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, ArXiv Prepr. ArXiv13013781. (2013).
[35]
L. Bottou, Stochastic gradient learning in neural networks, Proc. Neuro-Nımes. 91 (1991) 12.
[36]
W.W. Zachary, An information flow model for conflict and fission in small groups, J. Anthropol. Res. 33 (4) (1977) 452–473.
[37]
K. Guo, Q. Wang, J. Lin, L. Wu, W. Guo, K.-M. Chao, Network representation learning based on community-aware and adaptive random walk for overlapping community detection, Appl. Intell. 52 (9) (2022) 9919–9937.
[38]
H. Zhu, P. Koniusz, REFINE: Random RangE FInder for Network Embedding, in: Proc. 30th ACM Int. Conf. Inf. Knowl. Manag., ACM, Virtual Event Queensland Australia, 2021: pp. 3682–3686.
[39]
Z. Huang, A. Silva, A. Singh, A Broader Picture of Random-walk Based Graph Embedding, in: Proc. 27th ACM SIGKDD Conf. Knowl. Discov. Data Min., ACM, Virtual Event Singapore, 2021: pp. 685–695.
[40]
L.F. Ribeiro, P.H. Saverese, D.R. Figueiredo, struc2vec: Learning node representations from structural identity, in: Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2017: pp. 385–394.
[41]
F. Wilcoxon, Individual comparisons by ranking methods, in: Breakthr. Stat., Springer, 1992: pp. 196–202.
[42]
R. Rossi, N. Ahmed, The network data repository with interactive graph analytics and visualization, in: Proc. AAAI Conf. Artif. Intell., 2015.
[43]
L. Van der Maaten, G. Hinton, Visualizing data using t-SNE., J. Mach. Learn. Res. 9 (2008).

Index Terms

  1. Role-aware random walk for network embedding
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Information Sciences: an International Journal
      Information Sciences: an International Journal  Volume 652, Issue C
      Jan 2024
      591 pages

      Publisher

      Elsevier Science Inc.

      United States

      Publication History

      Published: 01 January 2024

      Author Tags

      1. Network embedding
      2. Representation learning
      3. Random walk
      4. Structural role
      5. Community detection

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 18 Sep 2024

      Other Metrics

      Citations

      View Options

      View options

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media