Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Metalearning and Recommender Systems

Published: 01 January 2018 Publication History

Abstract

The problem of information overload motivated the appearance of Recommender Systems. From the several open problems in this area, the decision of which is the best recommendation algorithm for a specific problem is one of the most important and less studied. The current trend to solve this problem is the experimental evaluation of several recommendation algorithms in a handful of datasets. However, these studies require an extensive amount of computational resources, particularly processing time. To avoid these drawbacks, researchers have investigated the use of Metalearning to select the best recommendation algorithms in different scopes. Such studies allow to understand the relationships between data characteristics and the relative performance of recommendation algorithms, which can be used to select the best algorithm(s) for a new problem. The contributions of this study are two-fold: 1) to identify and discuss the key concepts of algorithm selection for recommendation algorithms via a systematic literature review and 2) to perform an experimental study on the Metalearning approaches reviewed in order to identify the most promising concepts for automatic selection of recommendation algorithms.

References

[1]
G. Adomavicius, R. Sankaranarayanan, S. Sen, A. Tuzhilin, Incorporating contextual information in recommender systems using a multidimensional approach, ACM Trans. Inf. Syst., 23 (2005) 103-145.
[2]
G. Adomavicius, J. Zhang, Impact of data characteristics on recommender systems performance, ACM Trans. Manag. Inf. Syst., 3 (2012) 1-17.
[3]
T. Bertin-Mahieux, D.P.W. Ellis, B. Whitman, P. Lamere, The million song dataset, 2011.
[4]
Y. Blanco-Fernndez, J. Pazos-Arias, A. Gil-solla, M. Ramos-Cabrer, Providing entertainment by content-based filtering and semantic reasoning in intelligent recommender systems, IEEE Trans. Consum. Electron., 54 (2008) 727-735.
[5]
J. Bobadilla, F. Ortega, A. Hernando, A. Gutirrez, Recommender systems survey, Knowl. Based Syst., 46 (2013) 109-132.
[6]
P. Brazdil, C. Giraud-Carrier, C. Soares, R. Vilalta, Metalearning: Applications to Data Mining, Springer, 2009.
[7]
R. Burke, Hybrid web recommender systems, The adaptive web (2007) 377-408.
[8]
P.G. Campos, F. Dez, I. Cantador, Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols, User Model User-Adapt. Interact., 24 (2013) 67-119.
[9]
T. Cunha, R.J.F. Rossetti, C. Soares, Analysing collaborative filtering algorithms in a multi-agent environment, 2014.
[10]
T. Cunha, C. Soares, A.C. de Carvalho, Selecting collaborative filtering algorithms using metalearning, 2016.
[11]
J. Demar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7 (2006) 1-30.
[12]
S. Dooms, T. De Pessemier, L. Martens, MovieTweetings: a Movie Rating Dataset Collected From Twitter, 2013.
[13]
M. Ekstrand, J. Riedl, When recommenders fail: predicting recommender failure for algorithm selection and combination, ACM Conf. Recommend. Syst. (2012) 233-236.
[14]
Z. Gantner, S. Rendle, C. Freudenthaler, L. Schmidt-Thieme, MyMediaLite: A Free Recommender System Library, 2011.
[15]
K. Goldberg, T. Roeder, D. Gupta, C. Perkins, Eigentaste: a constant time collaborative filtering algorithm, Inf. Retr., 4 (2001) 133-151.
[16]
J. Griffith, C. ORiordan, H. Sorensen, Investigations into user rating information and predictive accuracy in a collaborative filtering domain, 2012.
[17]
GroupLens, MovieLens datasets, 2016.
[18]
J.L. Herlocker, J.a. Konstan, L.G. Terveen, J.T. Riedl, Evaluating collaborative filtering recommender systems, ACM Trans. Inf. Syst., 22 (2004) 5-53.
[19]
Z. Huang, D.D. Zeng, Why does collaborative filtering work? transaction-based recommendation model validation and selection by analyzing bipartite random graphs, INFORMS, 23 (2011) 138-152.
[20]
D. Kim, C. Park, J. Oh, H. Yu, Deep hybrid recommender systems via exploiting document context and statistics of items, Inf. Sci., 417 (2017) 72-87.
[21]
Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems, Computer, 42 (2009) 30-37.
[22]
J. Liu, C. Sui, D. Deng, J. Wang, B. Feng, W. Liu, C. Wu, Representing conditional preference by boosted regression trees for recommendation, Inf. Sci., 327 (2016) 1-20.
[23]
J. Liu, C. Wu, W. Liu, Bayesian probabilistic matrix factorization with social relations and item contents for recommendation, Decis. Support Syst., 55 (2013) 838-850.
[24]
W. Liu, C. Wu, B. Feng, J. Liu, Conditional preference in recommender systems, Expert Syst. Appl., 42 (2015) 774-788.
[25]
L. L, M. Medo, C.H. Yeung, Y.-C. Zhang, Z.-K. Zhang, T. Zhou, Recommender systems, Phys. Rep., 519 (2012) 1-49.
[26]
P. Matuszyk, M. Spiliopoulou, Predicting the performance of collaborative filtering algorithms, 2014.
[27]
J. McAuley, J. Leskovec, Hidden factors and hidden topics: understanding rating dimensions with review text, 2013.
[28]
E.D. Michie, D.J. Spiegelhalter, C.C. Taylor, Machine learning, neural and statistical classification, 1994.
[29]
Netflix, Netflix prize data set (2009). URL:http://archive.ics.uci.edu/ml/datasets/Netflix+Prize.
[30]
F. Ortega, A. Hernando, J. Bobadilla, J.H. Kang, Recommending items to group of users using matrix factorization based collaborative filtering, Inf. Sci., 345 (2016) 313-324.
[31]
F. Pinto, C. Soares, J. Mendes-Moreira, Towards automatic generation of Metafeatures, 2016.
[32]
R.B. Prudncio, T.B. Ludermir, Meta-learning approaches to selecting time series models, Neurocomputing, 61 (2004) 121-137.
[33]
J. Rice, The algorithm selection problem, Adv. Comput., 15 (1976) 65-118.
[34]
M. Richardson, R. Agrawal, P. Domingos, Trust Management for the Semantic Web, pp. 351368.
[35]
A.L.D. Rossi, A.C.P.D.L.F. de Carvalho, C. Soares, B.F. de Souza, MetaStream: a meta-learning based method for periodic algorithm selection in time-changing data, Neurocomputing, 127 (2014) 52-64.
[36]
A. Said, A. Bellogn, Comparative recommender system evaluation: benchmarking recommendation frameworks, 2014.
[37]
B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Analysis of recommendation algorithms for e-commerce, 2000.
[38]
F. Serban, J. Vanschoren, A. Bernstein, A survey of intelligent assistants for data analysis, ACM Comput. Surv., V (2013) 1-35.
[39]
C. Soares, P.B. Brazdil, P. Kuba, A meta-learning method to select the kernel width in support vector regression, Mach. Learn., 54 (2004) 195-209.
[40]
H.E.A. Tinsley, S.D. Brown, Handbook of Applied Multivariate Statistics and Mathematical Modeling, Elsevier Science, 2000.
[41]
J. Vanschoren, Katholieke Universiteit Leuven, 2010.
[42]
H. Wang, Y. Lu, C. Zhai, Latent aspect rating analysis without aspect keyword supervision, 2011.
[43]
R. Wang, A. Liu, F. Yuan, The followee recommendation algorithm based on microblog user interest and characteristic, J. Inf. Comput. Sci., 11 (2014) 1585-1596.
[44]
C. Wu, J. Wang, J. Liu, W. Liu, Recurrent neural network based recommendation for time heterogeneous feedback, Knowl. Based Syst., 109 (2016) 90-103.
[45]
Yahoo!, Webscope datasets, 2016. URL:https://webscope.sandbox.yahoo.com/.
[46]
X. Yang, Y. Guo, Y. Liu, H. Steck, A survey of collaborative filtering based social recommender systems, Comput. Commun., 41 (2014) 1-10.
[47]
Yelp, Yelp Dataset Challenge, 2016. URL:https://www.yelp.com/dataset_challenge.
[48]
R. Zafarani, H. Liu, Social computing data repository at ASU, 2009. URL:http://socialcomputing.asu.edu.
[49]
A. Zapata, V.H. Menndez, M.E. Prieto, C. Romero, Evaluation and selection of group recommendation strategies for collaborative searching of learning objects, Int. J. Hum. Comput. Stud., 76 (2015) 22-39.
[50]
C.-N.C. Ziegler, S.M.S. McNee, J.a.J. Konstan, G. Lausen, Improving recommendation lists through topic diversification, 2005.

Cited By

View all
  • (2024)Recommender Systems Algorithm Selection for Ranking Prediction on Implicit Feedback DatasetsProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3691718(1163-1167)Online publication date: 8-Oct-2024
  • (2024)Sequence aware recommenders for fashion E-commerceElectronic Commerce Research10.1007/s10660-022-09627-824:4(2733-2753)Online publication date: 1-Dec-2024
  • (2023)Advancing Automation of Design Decisions in Recommender System PipelinesProceedings of the 17th ACM Conference on Recommender Systems10.1145/3604915.3608886(1355-1360)Online publication date: 14-Sep-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Information Sciences: an International Journal
Information Sciences: an International Journal  Volume 423, Issue C
January 2018
399 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 January 2018

Author Tags

  1. Algorithm selection
  2. Collaborative Filtering
  3. Metalearning
  4. Recommendation system

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Recommender Systems Algorithm Selection for Ranking Prediction on Implicit Feedback DatasetsProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3691718(1163-1167)Online publication date: 8-Oct-2024
  • (2024)Sequence aware recommenders for fashion E-commerceElectronic Commerce Research10.1007/s10660-022-09627-824:4(2733-2753)Online publication date: 1-Dec-2024
  • (2023)Advancing Automation of Design Decisions in Recommender System PipelinesProceedings of the 17th ACM Conference on Recommender Systems10.1145/3604915.3608886(1355-1360)Online publication date: 14-Sep-2023
  • (2023)Collaborative filtering algorithms are prone to mainstream-taste biasProceedings of the 17th ACM Conference on Recommender Systems10.1145/3604915.3608825(750-756)Online publication date: 14-Sep-2023
  • (2023)Exploring the Automatic Selection of Aggregation Methods in Group RecommendationFuzzy Logic and Technology, and Aggregation Operators10.1007/978-3-031-39965-7_13(149-160)Online publication date: 4-Sep-2023
  • (2022)On the generalizability and predictability of recommender systemsProceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3600589(4416-4432)Online publication date: 28-Nov-2022
  • (2022)Multisource Heterogeneous User-Generated Contents-Driven Interactive Estimation of Distribution Algorithms for Personalized SearchIEEE Transactions on Evolutionary Computation10.1109/TEVC.2021.310957626:5(844-858)Online publication date: 1-Oct-2022
  • (2022)ColdGAN: an effective cold-start recommendation system for new users based on generative adversarial networksApplied Intelligence10.1007/s10489-022-04005-153:7(8302-8317)Online publication date: 29-Jul-2022
  • (2022)Computational knowledge vision: paradigmatic knowledge based prescriptive learning and reasoning for perception and visionArtificial Intelligence Review10.1007/s10462-022-10166-955:8(5917-5952)Online publication date: 1-Dec-2022
  • (2021)Improving Recommender Systems by Using Time-Weighted Sentiment AnalysisProceedings of the 5th International Conference on E-Commerce, E-Business and E-Government10.1145/3466029.3466057(15-19)Online publication date: 28-Apr-2021
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media