Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Type-1 and Type-2 fuzzy logic controller design using a Hybrid PSO-GA optimization method

Published: 20 November 2014 Publication History

Abstract

In this paper we propose a Hybrid PSO-GA optimization method for automatic design of fuzzy logic controllers (FLC) to minimize the steady state error of a plant's response. We test the optimal FLC obtained by the Hybrid PSO-GA method using benchmark control plants and an autonomous mobile robot for trajectory tracking control. The bio-inspired method is used to find the parameters of the membership functions of the FLC to obtain the optimal controller for the respective plants. Simulation results show the feasibility of the proposed approach for these control applications. A comparison is also made among the proposed Hybrid PSO-GA, with GA and PSO to determine if there is a significant difference in the results.

References

[1]
W.F. Abd-El-Wahed, A.A. Mousa, M.A. El-Shorbagy, Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems, J. Comput. Appl. Math., 235 (2011) 1446-1453.
[2]
R. Alcalá, J. Alcalá-Fdez, F. Herrera, A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection, IEEE Trans. Fuzzy Syst., 15 (2007) 616-635.
[3]
R. Alcalá, M.J. Gacto, F. Herrera, J. Alcalá-Fdez, A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems, Int. J. Uncertain. Fuzz. Knowl.-Based Syst., 15 (2007) 539-557.
[4]
P.J. Angeline, Evolutionary optimization versus particle swarm optimization: philosophy and performance differences, in: Lecture Notes in Computer Science, vol. 1447, Springer, 1998, pp. 601-610.
[5]
P.J. Angeline, Using selection to improve particle swarm optimization, in: Proceedings 1998 IEEE World Congress on Computational Intelligence, IEEE, Anchorage, Alaska, 1998, pp. 84-89.
[6]
J. Casillas, O. Cordon, M.J. Del Jesús, F. Herrera, Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction, IEEE Trans. Fuzzy Syst., 13 (2005) 13-29.
[7]
Z. Chi, H. Yan, T. Pham, Fuzzy Algorithms: With Applications to Image Processing and Pattern recognition, World Scientific, Singapore, 1996.
[8]
O. Cordon, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena, Ten years of genetic fuzzy systems: current framework and new trends, Fuzzy Sets Syst., 141 (2004) 5-31.
[9]
D. Driankov, H. Hellendoorn, M. Reinfrank, An Introduction to Fuzzy Control, Springer, Berlin, 1993.
[10]
R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, 1995, pp. 39-43.
[11]
A.P. Engelbretht, Fundamentals of Computational Swarm Intelligence, John Wiley & Sons Ltd., England, 2005.
[12]
M.H. Fazel Zarandi, I.B. Turksen, S.M. Hadian, Development of a neuro-fuzzy controller for a steam generation plant using fuzzy cluster analysis, J. Intell. Fuzzy Syst., 18 (2007) 57-71.
[13]
P. Fazendeiro, J.V. De Oliveira, W. Pedrycz, A multiobjective design of a patient and anaesthetist-friendly neuromuscular blockade controller, IEEE Trans. Biomed. Eng., 54 (2007) 1667-1678.
[14]
D.B. Fogel, An introduction to simulated evolutionary optimization, IEEE Trans. Neural Networks, 5 (1994) 3-14.
[15]
T. Fukao, H. Nakagawa, N. Adachi, Adaptive tracking control of a nonholonomic mobile robot, IEEE Trans. Robot. Automat., 16 (2000) 609-615.
[16]
F. Herrera, Genetic fuzzy systems: taxonomy, current research trends and prospects, Evolut. Intell., 1 (2008) 27-46.
[17]
F. Herrera, M. Lozano, J.L. Verdegay, Tuning fuzzy logic controllers by genetic algorithms, Int. J. Approx. Reason., 12 (1995) 299-315.
[18]
Yi-T. Kao, E. Zahara, Hybrid genetic algorithm and particle swarm optimization for multimodal functions, Appl. Soft Comput., 8 (2008) 849-857.
[19]
J. Kennedy, R. Mendes, Population structure and particle swarm performance, in: Proceedings of IEEE Conference on Evolutionary Computation, 2002, pp. 1671-1676.
[20]
J. Kennedy, R. Mendes, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evolut. Comput., 6 (2002) 58-73.
[21]
D.H. Kim, Hybrid GA-BF based intelligent PID controller tuning for AVR system, Appl. Soft Comput., 11 (2011) 11-22.
[22]
T.H. Lee, F.H.F. Leung, P.K.S. Tam, Position Control for Wheeled Mobile Robot Using a Fuzzy Controller, IEEE, 1999.
[23]
Q. Liang, J.M. Mendel, Interval type-2 fuzzy logic systems: theory and design, IEEE Trans. Fuzzy Syst., 8 (2000) 535-550.
[24]
Y. Marinakis, M. Marinaki, A hybrid genetic - particle swarm optimization algorithm for the vehicle routing problem, Expert Syst. Appl., 37 (2010) 1446-1455.
[25]
R. Martínez, O. Castillo, L.T. Aguilar, A. Rodríguez, Optimization of type-2 fuzzy logic controllers for mobile robots using evolutionary methods, in: Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA, October 2009, pp. 4909-4914.
[26]
R. Martínez, O. Castillo, L.T. Aguilar, Intelligent control for a perturbed autonomous wheeled mobile robot using type-2 fuzzy logic and genetic algorithms, J. Automat., Mob. Robot. Intell. Syst., 2 (2008).
[27]
P. Melin, O. Castillo, A new method for adaptive control of non-linear plants using type-2 fuzzy logic and neural networks, Int. J. Gen. Syst., 33 (2004) 289-304.
[28]
O. Montiel, O. Castillo, P. Melin, A. Rodríguez Díaz, R. Sepúlveda, Human evolutionary model: a new approach to optimization, Inf. Sci., 177 (2007) 2075-2098.
[29]
O. Montiel, R. Sepulveda, P. Melin, O. Castillo, M.A. Porta Garcia, I.M. Meza Sanchez, Performance of a simple tuned fuzzy controller and PID controller on a DC motor, in: Foundations of Computational Intelligence, IEEE Symposium Series on Computational Intelligence (FOCI'07), Honolulu, Hawaii, USA, April 1-5, 2008, pp. 531-537.
[30]
S. Muhammad, Z. Saira, F. Muddassar, A hybrid GA-PSO fuzzy system for user identification on Smartphones, in: GECCO'09 Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, Montreal-Canada, July 8-12, 2009, pp. 1617-1624.
[31]
Q. Niu, B. Jiao, X. Gu, Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time, Appl. Math. Comput., 205 (2008) 148-158.
[32]
W. Pedrycz, Fuzzy Modeling: Paradigms and Practice, Kluwer Academic Press, Dordrecht, 1996.
[33]
R. Sepúlveda, O. Montiel, O. Castillo, P. Melin, Optimizing the MFs in type-2 fuzzy logic controllers, using the human evolutionary model, Int. Rev. Automat. Control (IREACO), Theory Appl., 3 (2010) 1-10.
[34]
P.K. Tripathi, S. Bandyopadhyay, S. Kumar Pal, Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients, Inf. Sci., 177 (2007) 5033-5049.
[35]
F. Valdez, P. Melin, O. Castillo, An improved evolutionary method with fuzzy logic for combining particles swarm optimization and genetic algorithms, Appl. Soft Comput. - Impact Comput. Progress Artif. Intell., 11 (2011) 2625-2632.

Cited By

View all
  • (2021)Stability analysis of dynamic interval type‐2 fuzzy control systems in frequency domainAsian Journal of Control10.1002/asjc.240723:6(2729-2739)Online publication date: 1-Nov-2021
  • (2020)Stability analysis of dynamic nonlinear interval type-2 TSK fuzzy control systems based on describing functionSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-020-04811-024:19(14623-14636)Online publication date: 7-Mar-2020
  • (2019)Inverse Dynamics Based Optimal Fuzzy Controller for a Robot Manipulator via Particle Swarm OptimizationJournal of Robotics10.1155/2019/50521852019Online publication date: 1-Jan-2019
  • Show More Cited By
  1. Type-1 and Type-2 fuzzy logic controller design using a Hybrid PSO-GA optimization method

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Information Sciences: an International Journal
      Information Sciences: an International Journal  Volume 285, Issue C
      November 2014
      237 pages

      Publisher

      Elsevier Science Inc.

      United States

      Publication History

      Published: 20 November 2014

      Author Tags

      1. Fuzzy logic controller
      2. Genetic algorithm
      3. Particle swarm optimization

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 08 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2021)Stability analysis of dynamic interval type‐2 fuzzy control systems in frequency domainAsian Journal of Control10.1002/asjc.240723:6(2729-2739)Online publication date: 1-Nov-2021
      • (2020)Stability analysis of dynamic nonlinear interval type-2 TSK fuzzy control systems based on describing functionSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-020-04811-024:19(14623-14636)Online publication date: 7-Mar-2020
      • (2019)Inverse Dynamics Based Optimal Fuzzy Controller for a Robot Manipulator via Particle Swarm OptimizationJournal of Robotics10.1155/2019/50521852019Online publication date: 1-Jan-2019
      • (2018)PSO-Based Fuzzy Markup Language for Student Learning Performance Evaluation and Educational ApplicationIEEE Transactions on Fuzzy Systems10.1109/TFUZZ.2018.281081426:5(2618-2633)Online publication date: 1-Oct-2018
      • (2018)A survey on advancement of hybrid type 2 fuzzy sliding mode controlNeural Computing and Applications10.1007/s00521-017-3144-z30:2(331-353)Online publication date: 1-Jul-2018
      • (2018)Model-based control using interval type-2 fuzzy logic systemsSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-016-2358-922:2(607-620)Online publication date: 1-Jan-2018
      • (2017)Recent advances on the use of meta-heuristic optimization algorithms to optimize the type-2 fuzzy logic systems in intelligent controlNeural Computing and Applications10.1007/s00521-015-2111-928:5(979-999)Online publication date: 1-May-2017
      • (2016)A simple and effective remedial learning system with a fuzzy expert systemJournal of Computer Assisted Learning10.1111/jcal.1216032:6(647-662)Online publication date: 1-Dec-2016
      • (2016)Modeling and simulation of pedestrian dynamical behavior based on a fuzzy logic approachInformation Sciences: an International Journal10.1016/j.ins.2016.04.018360:C(112-130)Online publication date: 10-Sep-2016
      • (2016)Accelerating particle swarm optimization using crisscross searchInformation Sciences: an International Journal10.1016/j.ins.2015.08.018329:C(52-72)Online publication date: 1-Feb-2016
      • Show More Cited By

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media