Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A bibliometric analysis of 20 years of research on software product lines

Published: 01 April 2016 Publication History

Abstract

Context: Software product line engineering has proven to be an efficient paradigm to developing families of similar software systems at lower costs, in shorter time, and with higher quality.Objective: This paper analyzes the literature on product lines from 1995 to 2014, identifying the most influential publications, the most researched topics, and how the interest in those topics has evolved along the way.Method: Bibliographic data have been gathered from ISI Web of Science and Scopus. The data have been examined using two prominent bibliometric approaches: science mapping and performance analysis.Results: According to the study carried out, (i) software architecture was the initial motor of research in SPL; (ii) work on systematic software reuse has been essential for the development of the area; and (iii) feature modeling has been the most important topic for the last fifteen years, having the best evolution behavior in terms of number of published papers and received citations.Conclusion: Science mapping has been used to identify the main researched topics, the evolution of the interest in those topics and the relationships among topics. Performance analysis has been used to recognize the most influential papers, the journals and conferences that have published most papers, how numerous is the literature on product lines and what is its distribution over time.

References

[1]
P. Clements, L. Northrop, Software Product Lines: Practices and Patterns, Addison Wesley Professional, 2001.
[2]
F.J. van der Linden, K. Schmid, E. Rommes, Springer-Verlag Berlin Heidelberg, 2007.
[3]
E. Garfield, Introducing citation classics. The human side of scientific reports, Current Comments (1977) 5-7.
[4]
M. Callon, J. Courtial, F. Laville, Co-word analysis as a tool for describing the network of interactions between basic and technological research: the case of polymer chemistry, Scientometrics (1991) 155-205.
[5]
J.E. Hirsch, An index to quantify an individual's scientific research output, Proc. Natl. Acad. Sci. USA, 46 (2005) 16569-16572.
[6]
N. Coulter, I. Monarch, S. Konda, Software engineering as seen through its research literature: a study in co-word analysis, J. Am. Soc. Inf. Sci., 13 (1998) 1206-1223.
[7]
K. Börner, C. Chen, K.W. Boyack, Visualizing knowledge domains, Annu. Rev. Inf. Sci. Technol., 37 (2003) 179-255.
[8]
M. Cobo, A. Lopez-Herrera, E. Herrera-Viedma, F. Herrera, Science mapping software tools: review, analysis, and cooperative study among tools, J. Am. Soc. Inf. Sci. Technol. (2011) 1382-1402.
[9]
V. Gomez-Jauregui, C. Gomez-Jauregui, C. Manchado, C. Otero, Information management and improvement of citation indices, Int. J. Inf. Manag., 2 (2014) 257-271.
[10]
E.S. Vieira, J.A. Gomes, A comparison of Scopus and web of science for a typical university, Scientometrics, 81 (2009) 587-600.
[11]
F. Bachmann, P.C. Clements, Variability in software product lines, Software Engineering Institute, CMU/SEI-2005-TR-012, 2005.
[12]
E. Noyons, H. Moed, A. Van Raan, Integrating research performance analysis and science mapping, Scientometrics, 46 (1999) 591-604.
[13]
M. Cobo, A. Lopez-Herrera, E. Herrera-Viedma, F. Herrera, Scimat: a new science mapping analysis software tool, J. Am. Soc. Inf. Sci. Technol., 63 (2012) 1609-1630.
[14]
H.F. Moed, New developments in the use of citation analysis in research evaluation, Archivum Immunologiae et Therapiae Experimentalis, 57 (2009) 13-18.
[15]
E. Garfield, Institute for Scientific Information Press, 1979.
[16]
J.K. Vanclay, On the robustness of the h-index, J. Am. Soc. Inf. Sci. Technol., 58 (2007) 1547-1550.
[17]
W. Tam, E. Wong, F. Wong, D. Hui, Citation classics: top 50 cited articles in "respiratory system", Respirology, 18 (2013) 71-81.
[18]
D.R. Smith, Ten citation classics from the New Zealand medical journal, J. N. Z. Med. Assoc., 120 (2007) 2871-2875.
[19]
S. Stack, Citation classics in suicide and life threatening behavior: a research note, Suicide Life Threat Behav., 42 (2012) 628-639.
[20]
A. Baltussen, C. Kindler, Citation classics in critical care medicine, Intensiv. Care Med., 30 (2004) 902-910.
[21]
M. Martinez, M. Herrera, J. Lopez-Gijon, E. Herrera-Viedma, H-classics: characterizing the concept of citation classics through h-index, Scientometrics, 98 (2014) 1971-1983.
[22]
P. Albarran, I. Ortuno, J. Ruiz-Castillo, The measurement of low- and high-impact in citation distributions: technical results, J. Informetr., 5 (2011) 48-63.
[23]
N.J. van Eck, L.L. Waltman, How to normalize cooccurrence data? An analysis of some well-known similarity measures, J. Am. Soc. Inf. Sci. Technol., 60 (2009) 1635-1651.
[24]
A. Rip, J. Courtial, Co-word maps of biotechnology: An example of cognitive scientometrics, Scientometrics, 6 (1984) 381-400.
[25]
M. Zitt, E. Bassecoulard, Y. Okubo, Shadows of the past in international cooperation: collaboration profiles of the top five producers of science, Scientometrics, 47 (2000) 627-657.
[26]
N.J. van Eck, L. Waltman, Bibliometric mapping of the computational intelligence field, Int. J. Uncertain. Fuzziness Knowl. Based Syst., 15 (2007) 625-645.
[27]
M. Callon, J. Law, A. Rip, Mapping the Dynamics of Science and Technology, The MacMillan Press Ltd, 1986.
[28]
V. Kandylas, S.P. Upham, L.H. Ungar, Analyzing knowledge communities using foreground and background clusters, ACM Trans. Knowl. Discov. Data, 4 (2010).
[29]
Q. He, Knowledge discovery through co-word analysis, Libr. Trends, 48 (1999) 133-159.
[30]
R. Bailon-Moreno, E. Jurado-Alameda, R. Ruiz-Baños, J. Courtial, Analysis of the scientific field of physical chemistry of surfactants with the unified scienctometric model. fit of relational and activity indicators, Scientometrics, 63 (2005) 259-276.
[31]
R. Bailon-Moreno, E. Jurado-Alameda, R. Ruiz-Baños, The scientific network of surfactants: structural analysis, J. Am. Soc. Inf. Sci. Technol., 57 (2006) 949-950.
[32]
A. Lopez-Herrera, M. Cobo, E. Herrera-Viedma, F. Herrera, R. Bailon-Moreno, E. Jimenez-Contreras, Visualization and evolution of the scientific structure of fuzzy sets research in Spain, Inf. Res., 14 (2009).
[33]
M. Cobo, A. Lopez-Herrera, E. Herrera-Viedma, F. Herrera, An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the fuzzy sets theory field, J. Informetr., 5 (2011) 146-166.
[34]
S. Bauin, B. Michelet, M. Schweighoffer, P. Vermeulin, Using bibliometrics in strategic analysis: understanding chemical reactions at the CNRS, Scientometrics, 22 (1991) 113-137.
[35]
J. Law, S. Bauin, J.-P. Courtial, J. Whittaker, Policy and the mapping of scientific change: a co-word analysis of research into environmental acidification, Scientometrics, 14 (1988) 251-264.
[36]
W. Turner, F. Rojouan, Evaluating input/output relationships in a regional research network using co-word analysis, Scientometrics, 22 (1991) 139-154.
[37]
T. Cahlik, Comparison of the maps of science, Scientometrics, 49 (2000) 373-387.
[38]
H. Small, Tracking and predicting growth areas in science, Scientometrics, 68 (2006) 595-610.
[39]
L. Hamers, Y. Hemeryck, G. Herweyers, M. Janssen, H. Keters, R. Rousseau, A. Vanhoutte, Similarity measures in scientometric research: the jaccard index versus Salton's cosine formula, Inf. Process. Manag., 25 (1989) 315-318.
[40]
H.P.F. Peters, R.R. Braam, A.F.J. van Raan, Cognitive resemblance and citation relations in chemical engineering publications, J. Am. Soc. Inf. Sci., 46 (1995) 9-21.
[41]
P. Ahlgren, B. Jarneving, R. Rousseau, Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient, J. Am. Soc. Inf. Sci. Technol., 54 (2003) 550-560.
[42]
C. Sternitzke, I. Bergmann, Similarity measures for document mapping: a comparative study on the level of an individual scientist, Scientometrics, 78 (2009) 113-130.
[43]
D. Benavides, S. Segura, A. Ruiz-Cortes, Automated analysis of feature models 20 years later: a literature review, Inf. Syst., 6 (2010) 615-636.
[44]
K. Czarnecki, S. Helsen, U. Eisenecker, Formalizing cardinality-based feature models and their specialization, Softw. Process: Improv. Pract., 10 (2005) 7-29.
[45]
K. Czarnecki, S. Helsen, U. Eisenecker, Staged configuration through specialization and multilevel configuration of feature models, Softw. Process: Improv. Pract. (2005) 143-169.
[46]
D. Batory, Feature models, grammars, and propositional formulas, 2005.
[47]
J. Coplien, D. Hoffman, D. Weiss, Commonality and variability in software engineering, IEEE Softw., 15 (1998) 37-45.
[48]
Y. Smaragdakis, D. Batory, Mixin layers: an object-oriented implementation technique for refinements and collaboration-based designs, ACM Trans. Softw. Eng. Methodol., 11 (2002) 215-255.
[49]
C. Kästner, S. Apel, M. Kuhlemann, Granularity in software product lines, 2008.
[50]
S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, Dynamic software product lines, Computer, 41 (2008) 93-95.
[51]
E. Figueiredo, N. Cacho, C. Sant'Anna, M. Monteiro, U. Kulesza, A. Garcia, S. Soares, F. Ferrari, S. Khan, F. Castor Filho, F. Dantas, Evolving software product lines with aspects: an empirical study on design stability, 2008.
[52]
P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, Y. Bontemps, Generic semantics of feature diagrams, Comput. Netw., 51 (2007) 456-479.
[53]
D. Benavides, P. Trinidad, A. Ruiz-Cortes, Automated reasoning on feature models, 2005.
[54]
P. Schobbens, P. Heymans, J.-C. Trigaux, Feature diagrams: a survey and a formal semantics, 2006.
[55]
K. Czarnecki, A. Wasowski, Feature diagrams and logics: there and back again, 2007.
[56]
S. Thaker, D. Batory, D. Kitchin, W. Cook, Safe composition of product lines, 2007.
[57]
G. Böckle, P. Clements, J.D. McGregor, D. Muthig, K. Schmid, Calculating ROI for software product lines, IEEE Softw., 21 (2004) 23-31.
[58]
S. Apel, T. Thomas Leich, G. Saake, Aspectual feature modules, IEEE Trans. Softw. Eng. (2008) 162-180.
[59]
A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, J.-F. Raskin, Model checking lots of systems: efficient verification of temporal properties in software product lines, 2010.
[60]
I. Schaefer, L. Bettini, F. Damiani, N. Tanzarella, Delta-oriented programming of software product lines, 2010.
[61]
M. Svahnberg, J. van Gurp, J. Bosch, A taxonomy of variability realization techniques, Softw. Pract. Exp., 35 (2005) 705-754.
[62]
K. Czarnecki, K. Pietroszek, Verifying feature-based model templates against well-formedness OCL constraints, 2006.
[63]
A. Metzger, K. Pohl, P. Heymans, P. Schobbens, G. Saval, Disambiguating the documentation of variability in software product lines: a separation of concerns, formalization and automated analysis, 2007.
[64]
T. Thüm, D. Batory, C. Kästner, Reasoning about edits to feature models, 2009.
[65]
E. Engstrom, P. Runeson, Software product line testing - a systematic mapping study, Inf. Softw. Technol., 53 (2011) 2-13.
[66]
M. Voelter, I. Groher, Product line implementation using aspect-oriented and model-driven software development, 2007.
[67]
J. Bosch, P. Bosch-Sijtsema, From integration to composition: On the impact of software product lines, global development and ecosystems, J. Syst. Softw., 83 (2010) 67-76.
[68]
C. Kästner, S. Apel, D. Batory, A case study implementing features using aspectJ, 2007.
[69]
M. Moon, K. Yeom, H.S. Chae, An approach to developing domain requirements as a core asset based on commonality and variability analysis in a product line, IEEE Trans. Softw. Eng., 31 (2005) 551-569.
[70]
D. Batory, D. Benavides, A. Ruiz-Cortes, Automated analysis of feature models: challenges ahead, Commun. ACM, 49 (2006) 45-47.
[71]
S. She, R. Lotufo, T. Berger, A. Wasowski, K. Czarnecki, Reverse engineering feature models, 2011.
[72]
M. Svahnberg, J. Bosch, Evolution in software product lines: two cases, J. Softw. Maint., 30 (1999) 391-422.
[73]
K. Schmid, A comprehensive product line scoping approach and its validation, 2002.
[74]
L. Northrop, SEI's software product line tenets, IEEE Softw., 19 (2002) 32-40.
[75]
K. Czarnecki, S. Helsen, E. Ulrich, Staged configuration using feature models, 2004.
[76]
F. Heidenreich, J. Kopcsek, C. Wende, FeatureMapper: mapping features to models, 2008.
[77]
S. Apel, C. Kästner, A. Grö¿ßlinger, C. Lengauer, Type safety for feature-oriented product lines, Autom. Softw. Eng., 17 (2010) 251-300.
[78]
A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, Symbolic model checking of software product lines, 2011.
[79]
K. Lee, K. Kang, J. Lee, Concepts and guidelines of feature modeling for product line software engineering, 2002.
[80]
D. Beuche, H. Papajewski, W. Schröder-Preikschat, Variability management with feature models, Sci. Comput. Program., 53 (2004) 333-352.
[81]
R. Mietzner, A. Metzger, F. Leymann, K. Pohl, Variability modeling to support customization and deployment of multi-tenant-aware software as a service applications, 2009.
[82]
J. Liebig, S. Apel, C. Lengauer, C. Kästner, M. Schulze, An analysis of the variability in forty preprocessor-based software product lines, 2010.
[83]
P.A. da Mota Silveira Neto, I. do Carmo Machado, J.D. McGregor, E.S. de Almeida, S.R. de Lemos Meira, A systematic mapping study of software product lines testing, Inf. Softw. Technol., 53 (2011) 407-423.
[84]
A. Birk, G. Heller, I. John, K. Schmid, T. von der Massen, K. Muller, Product line engineering, the state of the practice, IEEE Softw., 20 (2003) 52-60.
[85]
V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, C. Lucena, Refactoring product lines, 2006.
[86]
D. Fischbein, S. Uchitel, V. Braberman, A foundation for behavioural conformance in software product line architectures, 2006.
[87]
M. Mendonca, M. Branco, D. Cowan, S.P.L.O.T.: software product lines online tools, 2009.
[88]
R. van Ommering, Software reuse in product populations, IEEE Trans. Softw. Eng., 31 (2005) 537-550.
[89]
T. Asikainen, T. Männistö, T. Soininen, Kumbang: a domain ontology for modelling variability in software product families, Adv. Eng. Inform., 21 (2007) 23-40.
[90]
D. Dhungana, P. Grünbacher, R. Rabiser, The DOPLER meta-tool for decision-oriented variability modeling: a multiple case study, Autom. Softw. Eng., 18 (2011) 77-114.
[91]
L. Chen, M.A. Babar, A systematic review of evaluation of variability management approaches in software product lines, Inf. Softw. Technol., 53 (2011) 344-362.
[92]
T. Berger, S. She, R. Lotufo, A. Wasowski, K. Czarnecki, Variability modeling in the real: a perspective from the operating systems domain, 2010.
[93]
C. Krueger, Eliminating the adoption barrier, IEEE Softw., 19 (2002) 29-31.
[94]
W. Lam, A case-study of requirements reuse through product families, Ann. Softw. Eng., 5 (1998) 253-277.
[95]
D. Dikel, D. Kane, S. Ornburn, W. Loftus, J. Wilson, Applying software product-line architecture, Computer, 30 (1997) 49-55.
[96]
D.C. Rine, R.M. Sonnemann, Investments in reusable software. a study of software reuse investment success factors, J. Syst. Softw., 41 (1998) 17-32.
[97]
K.C. Kang, S. Kim, J. Lee, K. Lee, Feature-oriented engineering of PBX software for adaptability and reuseability, Softw. Pract. Exp., 29 (1999) 875-896.
[98]
R. Lutz, G. Helmer, M. Moseman, D. Statezni, S. Tockey, Safety analysis of requirements for a product family, 1998.
[99]
K. Lee, K. Kang, Feature dependency analysis for product line component design, 2004.
[100]
M. Ardis, N. Daley, D. Hoffman, H. Siy, D. Weiss, Software product lines: a case study, Softw. Pract. Exp., 30 (2000) 825-847.
[101]
J. van Gurp, J. Bosch, M. Svahnberg, On the notion of variability in software product lines, 2001.
[102]
S. Park, M. Kim, V. Sugumaran, A scenario, goal and feature-oriented domain analysis approach for developing software product lines, Ind. Manag. Data Syst. (2004) 296-308.
[103]
R.R. Lutz, Extending the product family approach to support safe reuse, J. Syst. Softw., 53 (2000) 207-217.
[104]
A. Taulavuori, E. Niemel, P. Kallio, Component documentation-a key issue in software product lines, Inf. Softw. Technol., 46 (2004) 535-546.
[105]
H. Zhang, S. Jarzabek, B. Yang, Quality prediction and assessment for product lines, 2003.
[106]
J. Greenfield, K. Short, Software factories: assembling applications with patterns, models, frameworks and tools, 2003.
[107]
B. Boehm, A. Brown, R. Madachy, Y. Yang, A software product line life cycle cost estimation model, 2004.
[108]
C. Gacek, M. Anastasopoules, Implementing product line variabilities, 2001.
[109]
M. Matinlassi, Comparison of software product line architecture design methods: COPS, FAST, FORM, KobrA and QADA, 2004.
[110]
P. Sochos, I. Philippow, M. Riebisch, Feature-oriented development of software product lines: mapping feature models to the architecture, 2004.
[111]
M.L. Griss, Implementing product-line features by composing aspects, 2000.
[112]
A. Hein, M. Schlick, R. Vinga-Martins, Applying feature models in industrial settings, in: The Springer International Series in Engineering and Computer Science, 2000, pp. 47-70.
[113]
S. Deelstra, M. Sinnema, J. Bosch, Experiences in software product families: Problems and issues during product derivation, 2004.
[114]
V. Cechticky, A. Pasetti, O. Rohlik, W. Schaufelberger, XML-based feature modelling, 2004.
[115]
D. Faust, C. Verhoef, Software product line migration and deployment, Softw. Pract. Exp., 33 (2003) 933-955.
[116]
J. Liu, J. Dehlinger, R. Lutz, Safety analysis of software product lines using state-based modeling, J. Syst. Softw., 80 (2007) 1879-1892.
[117]
I. Reinhartz-Berger, A. Sturm, Utilizing domain models for application design and validation, Inf. Softw. Technol., 51 (2009) 1275-1289.
[118]
M.-O. Reiser, M. Weber, Multi-level feature trees: a pragmatic approach to managing highly complex product families, Requir. Eng., 12 (2007) 57-75.
[119]
M. Kim, S. Park, V. Sugumaran, H. Yang, Managing requirements conflicts in software product lines: a goal and scenario based approach, Data Knowl. Eng., 61 (2007) 417-432.
[120]
F. Ahmed, L.F. Capretz, The software product line architecture: an empirical investigation of key process activities, Inf. Softw. Technol., 50 (2008) 1098-1113.
[121]
M. Khurum, T. Gorschek, A systematic review of domain analysis solutions for product lines, J. Syst. Softw., 82 (2009) 1982-2003.
[122]
S. Buhne, K. Lauenroth, K. Pohl, Modelling requirements variability across product lines, 2005.
[123]
J. White, J.H. Hill, J. Gray, S. Tambe, A. Gokhale, D. Schmidt, Improving domain-specific language reuse with software product line techniques, IEEE Softw., 26 (2009) 47-53.
[124]
P. Padmanabhan, R.R. Lutz, Tool-supported verification of product line requirements, Autom. Softw. Eng., 12 (2005) 447-465.
[125]
K. Chen, W. Zhang, H. Zhao, H. Mei, An approach to constructing feature models based on requirements clustering, 2005.
[126]
P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, M. Toro, Automated error analysis for the agilization of feature modeling, J. Syst. Softw., 81 (2008) 883-896.
[127]
S. Trujillo, D. Batory, O. Diaz, Feature oriented model driven development: a case study for portlets, 2007.
[128]
R.E. Lopez-Herrejon, D. Batory, W. Cook, Evaluating support for features in advanced modularization technologies, 2005.
[129]
A. Classen, Q. Boucher, P. Heymans, A text-based approach to feature modelling: syntax and semantics of TVL, Sci. Comput. Program., 76 (2011) 1130-1143.
[130]
S. Segura, R.M. Hierons, D. Benavides, A. Ruiz-Cortés, Automated metamorphic testing on the analyses of feature models, Inf. Softw. Technol., 53 (2011) 245-258.
[131]
J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, P. Heymans, Feature model extraction from large collections of informal product descriptions, 2013.
[132]
M. Mendonca, D. Cowan, Decision-making coordination and efficient reasoning techniques for feature-based configuration, Sci. Comput. Program., 75 (2010) 311-332.
[133]
M. Acher, P. Collet, P. Lahire, R.B. France, Composing feature models, 2009.
[134]
M. Acher, P. Collet, P. Lahire, R.B. France, Familiar: a domain-specific language for large scale management of feature models, Sci. Comput. Program., 78 (2013) 657-681.
[135]
J. Liu, S. Basu, R.R. Lutz, Compositional model checking of software product lines using variation point obligations, Autom. Softw. Eng., 18 (2011) 39-76.
[136]
J. Kienzle, N. Guelfi, S. Mustafiz, Crisis management systems: a case study for aspect-oriented modeling, in: Lecture Notes in Computer Science, 2010, pp. 1-22.
[137]
D. Dhungana, P. Grünbacher, R. Rabiser, T. Neumayer, Structuring the modeling space and supporting evolution in software product line engineering, J. Syst. Softw., 83 (2010) 1108-1122.
[138]
I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botterweck, A. Pathak, S. Trujillo, K. Villela, Software diversity: state of the art and perspectives, Int. J. Softw. Tools Technol. Transf., 14 (2012) 477-495.
[139]
L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulezsa, P. Borba, Investigating the safe evolution of software product lines, 2011.
[140]
L.P. Tizzei, M. Dias, C.M. Rubira, A. Garcia, J. Lee, Components meet aspects: assessing design stability of a software product line, Inf. Softw. Technol., 53 (2011) 121-136.
[141]
M.I. Ullah, G. Ruhe, V. Garousi, Decision support for moving from a single product to a product portfolio in evolving software systems, J. Syst. Softw., 83 (2010) 2496-2512.
[142]
I. Reinhartz-Berger, Towards automatization of domain modeling, Data Knowl. Eng., 69 (2010) 491-515.
[143]
J. Lee, D. Muthig, M. Naab, A feature-oriented approach for developing reusable product line assets of service-based systems, J. Syst. Softw., 83 (2010) 1123-1136.
[144]
S. Zschaler, P. Sánchez, J.a. Santos, M. Alférez, A. Rashid, L. Fuentes, A. Moreira, J.a. Araújo, U. Kulesza, VML* - a family of languages for variability management in software product lines, 2010.
[145]
M. Galster, D. Weyns, D. Tofan, B. Michalik, P. Avgeriou, Variability in software systems - a systematic literature review, IEEE Trans. Softw. Eng., 40 (2014) 282-306.
[146]
E. Bagheri, D. Gasevic, Assessing the maintainability of software product line feature models using structural metrics, Softw. Qual. J., 19 (2011) 579-612.
[147]
D. Mellado, E. Fernández-Medina, M. Piattini, Security requirements engineering framework for software product lines, Inf. Softw. Technol., 52 (2010) 1094-1117.
[148]
F. Roos-Frantz, D. Benavides, A. Ruiz-Cortés, A. Heuer, K. Lauenroth, Quality-aware analysis in product line engineering with the orthogonal variability model, Softw. Qual. Control, 20 (2012) 519-565.
[149]
S. Montagud, S. Abrahão, E. Insfran, A systematic review of quality attributes and measures for software product lines, Softw. Qual. Control, 20 (2012) 425-486.
[150]
B. Mohabbati, D. Gašević, M. Hatala, M. Asadi, E. Bagheri, M. Bošković, A quality aggregation model for service-oriented software product lines based on variability and composition patterns, 2011.
[151]
R. Rabiser, P. Grunbacher, D. Dhungana, Requirements for product derivation support: results from a systematic literature review and an expert survey, Inf. Softw. Technol., 52 (2010) 324-346.
[152]
J. White, D. Benavides, D. Schmidt, P. Trinidad, B. Dougherty, A. Ruiz-Cortes, Automated diagnosis of feature model configurations, J. Syst. Softw., 83 (2010) 1094-1107.
[153]
K. Lee, K.C. Kang, Usage context as key driver for feature selection, Jeju Island, South Korea, 2010.
[154]
J. Guo, J. White, G. Wang, J. Li, Y. Wang, A genetic algorithm for optimized feature selection with resource constraints in software product lines, J. Syst. Softw., 84 (2011) 2208-2221.
[155]
M. Dong, D. Yang, L. Su, Ontology-based service product configuration system modeling and development, Expert Syst. Appl., 38 (2011) 11770-11786.
[156]
M. Boskovic, E. Bagheri, D. Gasevic, B. Mohabbati, N. Kaviani, M. Hatala, Automated staged configuration with semantic web technologies, Int. J. Softw. Eng. Knowl. Eng., 20 (2010) 459-484.
[157]
A. Sayyad, J. Ingram, T. Menzies, H. Ammar, Scalable product line configuration: A straw to break the camel's back, 2013.
[158]
V. Alves, N. Niu, C. Alves, G. Valença, Requirements engineering for software product lines: a systematic literature review, Inf. Softw. Technol., 52 (2010) 806-820.
[159]
S. Oster, F. Markert, P. Ritter, Automated incremental pairwise testing of software product lines, 2010.
[160]
A. Hervieu, B. Baudry, A. Gotlieb, PACOGEN: automatic generation of pairwise test configurations from feature models, 2011.
[161]
G. Perrouin, S. Sen, J. Klein, B. Baudry, Y.L. Traon, Automated and scalable t-wise test case generation strategies for software product lines, 2010.
[162]
C.H.P. Kim, D.S. Batory, S. Khurshid, Reducing combinatorics in testing product lines, 2011.
[163]
G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, Y. le Traon, Pairwise testing for software product lines: comparison of two approaches, Softw. Qual. J., 20 (2012) 605-643.
[164]
E. Uzuncaova, S. Khurshid, D. Batory, Incremental test generation for software product lines, IEEE Trans. Soft. Eng., 36 (2010) 309-322.
[165]
M. Franceschet, A comparison of bibliometric indicators for computer science scholars and journals on web of science and Google scholar, Scientometrics, 83 (2010) 243-258.
[166]
J.C. de Winter, A.A. Zadpoor, D. Dodou, The expansion of Google scholar versus web of science: a longitudinal study, Scientometrics, 98 (2014) 1547-1565.
[167]
P. Jacso, Google scholar revisited, Online Inf. Rev., 32 (2008) 102-114.
[168]
R. Cathcart, A. Roberts, Evaluating Google scholar as a tool for information literacy, Internet Ref. Serv. Q., 10 (2005) 167-176.
[169]
R. Vine, Google scholar, J. Med. Libr. Assoc., 98 (2006) 97-99.
[170]
P. Jacso, As we may search. comparison of major features of the web of science, Scopus, and Google scholar citation-based and citation-enhanced databases, Curr. Sci., 89 (2005) 1537-1547.
[171]
J.P.A. Ioannidis, A. Tatsioni, F.B. Karassa, Who is afraid of reviewers' comments? Or, why anything can be published and anything can be cited, Eur. J. Clin. Investig., 40 (2010) 285-287.
[172]
J. Beall, "Predatory" open-access scholarly publishers, Charlest. Advis., 12 (2010) 10-17.
[173]
M.A. Martinez, M.J. Cobo, M. Herrera, E. Herrera-Viedma, Analyzing the scientific evolution of social work discipline using science mapping, Res. Soc. Work Pract., 25 (2015) 257-277.
[174]
A.-W.K. Harzing, R. van der Wal, Google scholar as a new source for citation analysis, Ethics Sci. Environ. Polit., 8 (2008) 61-73.
[175]
A. Nederhof, E. Van Wijk, Mapping the social and behavioral sciences world-wide: use of maps in portfolio analysis of national research efforts, Scientometrics, 40 (1997) 237-276.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Information and Software Technology
Information and Software Technology  Volume 72, Issue C
April 2016
204 pages

Publisher

Butterworth-Heinemann

United States

Publication History

Published: 01 April 2016

Author Tags

  1. Bibliometrics
  2. Performance analysis
  3. Science mapping
  4. Software product lines

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2021)A topic analysis method based on a three-dimensional strategic diagramJournal of Information Science10.1177/016555152093090747:6(770-782)Online publication date: 1-Dec-2021
  • (2021)Dynamic test prioritization of product lines: An application on configurable simulation modelsSoftware Quality Journal10.1007/s11219-021-09571-029:4(943-988)Online publication date: 1-Dec-2021
  • (2020)Composite Technology Challenge System for Optimization in 5G CommunicationsSN Computer Science10.1007/s42979-020-00235-71:4Online publication date: 30-Jun-2020
  • (2019)A Kconfig Translation to Logic with One-Way Validation SystemProceedings of the 23rd International Systems and Software Product Line Conference - Volume A10.1145/3336294.3336313(303-308)Online publication date: 9-Sep-2019
  • (2019)Industrial and Academic Software Product Line Research at SPLCProceedings of the 23rd International Systems and Software Product Line Conference - Volume A10.1145/3336294.3336310(189-194)Online publication date: 9-Sep-2019
  • (2019)Answering the Call of the Wild?Proceedings of the 23rd International Systems and Software Product Line Conference - Volume B10.1145/3307630.3342400(143-150)Online publication date: 9-Sep-2019
  • (2019)Supporting the statistical analysis of variability modelsProceedings of the 41st International Conference on Software Engineering10.1109/ICSE.2019.00091(843-853)Online publication date: 25-May-2019
  • (2019)Automated analysis of feature modelsComputing10.1007/s00607-018-0646-1101:5(387-433)Online publication date: 1-May-2019
  • (2019)Twenty years of Soft ComputingSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-018-3168-z23:5(1477-1497)Online publication date: 1-Mar-2019
  • (2018)Feature-family-based reliability analysis of software product linesInformation and Software Technology10.5555/3163583.316367994:C(59-81)Online publication date: 1-Feb-2018
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media