Nothing Special   »   [go: up one dir, main page]

skip to main content
short-survey

Panchromatic and multispectral image fusion for remote sensing and earth observation: : Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead

Published: 01 May 2023 Publication History

Abstract

Panchromatic and multispectral image fusion, termed pan-sharpening, is to merge the spatial and spectral information of the source images into a fused one, which has a higher spatial and spectral resolution and is more reliable for downstream tasks compared with any of the source images. It has been widely applied to image interpretation and pre-processing of various applications. A large number of methods have been proposed to achieve better fusion results by considering the spatial and spectral relationships among panchromatic and multispectral images. In recent years, the fast development of artificial intelligence (AI) and deep learning (DL) has significantly enhanced the development of pan-sharpening techniques. However, this field lacks a comprehensive overview of recent advances boosted by the rise of AI and DL. This paper provides a comprehensive review of a variety of pan-sharpening methods that adopt four different paradigms, i.e., component substitution, multiresolution analysis, degradation model, and deep neural networks. As an important aspect of pan-sharpening, the evaluation of the fused image is also outlined to present various assessment methods in terms of reduced-resolution and full-resolution quality measurement. Then, we conclude this paper by discussing the existing limitations, difficulties, and challenges of pan-sharpening techniques, datasets, and quality assessment. In addition, the survey summarizes the development trends in these areas, which provide useful methodological practices for researchers and professionals. Finally, the developments in pan-sharpening are summarized in the conclusion part. The aim of the survey is to serve as a referential starting point for newcomers and a common point of agreement around the research directions to be followed in this exciting area.

Highlights

This paper provides a review of pan-sharpening methods that adopt four paradigms.
The evaluation of the fused image is also outlined.
We discuss limitations, difficulties, and challenges of pan-sharpening techniques.
The trends in these areas are given for better methodological practices.

References

[1]
Han P., Ma C., Li Q., Leng P., Bu S., Li K., Aerial image change detection using dual regions of interest networks, Neurocomputing 349 (2019) 190–201.
[2]
Wang S., Liu L., Qu L., Yu C., Sun Y., Gao F., Dong J., Accurate ulva prolifera regions extraction of UAV images with superpixel and CNNs for ocean environment monitoring, Neurocomputing 348 (2019) 158–168.
[3]
Huang G., Wan Z., Liu X., Hui J., Wang Z., Zhang Z., Ship detection based on squeeze excitation skip-connection path networks for optical remote sensing images, Neurocomputing 332 (2019) 215–223.
[4]
Wang L., Xiong Z., Shi G., Zeng W., Wu F., Adaptive nonlocal sparse representation for dual-camera compressive hyperspectral imaging, IEEE Trans. Pattern Anal. Mach. Intell. 39 (10) (2017) 2104–2111.
[5]
Hou B., Ren Z., Zhao W., Wu Q., Jiao L., Object detection in high-resolution panchromatic images using deep models and spatial template matching, IEEE Trans. Geosci. Remote Sens. 58 (2) (2020) 956–970.
[6]
Paris C., Bruzzone L., Fernandez-Prieto D., A novel approach to the unsupervised update of land-cover maps by classification of time series of multispectral images, IEEE Trans. Geosci. Remote Sens. 57 (7) (2019) 4259–4277.
[7]
Tu X., Shen X., Fu P., Wang T., Sun Q., Ji Z., Discriminant sub-dictionary learning with adaptive multiscale superpixel representation for hyperspectral image classification, Neurocomputing 409 (2020) 131–145.
[8]
Wang Z., Ziou D., Armenakis C., Li D., Li Q., A comparative analysis of image fusion methods, IEEE Trans. Geosci. Remote Sens. 43 (6) (2005) 1391–1402.
[9]
Alparone L., Wald L., Chanussot J., Thomas C., Gamba P., Bruce L.M., Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest, IEEE Trans. Geosci. Remote Sens. 45 (10) (2007) 3012–3021.
[10]
Hnsch R., Persello C., Vivone G., Navarro J., Boulch A., Lefevre S., Saux B., Data fusion contest 2022 (DFC2022), in: IEEE Dataport, 2022.
[11]
Byun Y., Choi J., Han Y., An area-based image fusion scheme for the integration of SAR and optical satellite imagery, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 5 (1) (2012) 125–134.
[12]
Wang H., Glennie C., Fusion of waveform LiDAR data and hyperspectral imagery for land cover classification, ISPRS J. Photogramm. Remote Sens. 108 (2015) 1–11.
[13]
Song H., Huang B., Spatiotemporal satellite image fusion through one-pair image learning, IEEE Trans. Geosci. Remote Sens. 51 (4) (2013) 1883–1896.
[14]
Zhang K., Wang M., Yang S., Multispectral and hyperspectral image fusion based on group spectral embedding and low-rank factorization, IEEE Trans. Geosci. Remote Sens. 55 (3) (2017) 1363–1371.
[15]
Zhang K., Wang M., Yang S., Jiao L., Spatial-spectral-graph-regularized low-rank tensor decomposition for multispectral and hyperspectral image fusion, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11 (4) (2018) 1030–1040.
[16]
Zhang F., Zhang K., Superpixel guided structure sparsity for multispectral and hyperspectral image fusion over couple dictionary, Multimedia Tools Appl. 79 (2020) 4949–4964.
[17]
Amro I., Mateos J., Vega M., Molina R., Katsaggelos A.K., A survey of classical methods and new trends in pansharpening of multispectral images, EURASIP J. Advan. Signal Process. 79 (2011) 1–22.
[18]
Liu X., Li L., Liu F., Hou B., Yang S., Jiao L., GAFNet: Group attention fusion network for PAN and MS image high-resolution classification, IEEE Trans. Cyber. 52 (10) (2022) 10556–10569.
[19]
Liao Y., Zhu H., Jiao L., Li X., Li N., Sun K., Tang X., Hou B., A two-stage mutual fusion network for multispectral and panchromatic image classification, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[20]
Tan Y., Xiong S., Li Y., Automatic extraction of built-up areas from panchromatic and multispectral remote sensing images using double-stream deep convolutional neural networks, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11 (11) (2018) 3988–4004.
[21]
Giacco F., Thiel C., Pugliese L., Scarpetta S., Marinaro M., Uncertainty analysis for the classification of multispectral satellite images using SVMs and SOMs, IEEE Trans. Geosci. Remote Sens. 48 (10) (2010) 3769–3779.
[22]
Zhang J., Multi-source remote sensing data fusion: status and trends I, J. Image Data Fusion 1 (2010) 5–24.
[23]
Hu B., Li Q., Hall G.B., A decision-level fusion approach to tree species classification from multi-source remotely sensed data, ISPRS Open J. Photogram. Remote Sens. 1 (2021).
[24]
Zhao H., Liu S., Du Q., Bruzzone L., Zheng Y., et al., GCFnet: Global collaborative fusion network for multispectral and panchromatic image classification, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[25]
Rayegani B., Barati S., Goshtasb H., Sarkheil H., Ramezani J., An effective approach to selecting the appropriate pan-sharpening method in digital change detection of natural ecosystems, Ecolog. Infor. 53 (2019).
[26]
Lottering R., Mutanga O., Peerbhay K., Ismail R., Detecting and mapping gonipterus scutellatus induced vegetation defoliation using WorldView-2 pan-sharpened image texture combinations and an artificial neural network, J. Appli. Remote Sensing 13 (1) (2019).
[27]
Qu Y., Qi H., Ayhan B., Kwan C., Kidd R., DOES multispectral/hyperspectral pansharpening improve the performance of anomaly detection?, in: IEEE IGARSS, 2017, pp. 1–4.
[28]
Du P., Liu S., Xia J., Zhao Y., Information fusion techniques for change detection from multi-temporal remote sensing images, Inf. Fusion 14 (2013) 19–27.
[29]
Wald L., Ranchin T., Mangolini M., Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images, Photogramm. Eng. Remote Sens. 63 (6) (1997) 691–699.
[30]
Thomas C., Ranchin T., Wald L., Chanussot J., Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics, IEEE Trans. Geosci. Remote Sens. 46 (5) (2008) 1301–1312.
[31]
Vivone G., Alparone L., Chanussot J., Mura M.D., Garzelli A., Licciardi G.A., Restaino R., Wald L., A critical comparison among pansharpening algorithms, IEEE Trans. Geosci. Remote Sens. 53 (5) (2015) 2565–2586.
[32]
Vivone G., Mura M.D., Garzelli A., Restaino R., et al., A new benchmark based on recent advances in multispectral pansharpening: Revisiting pansharpening with classical and emerging pansharpening methods, IEEE Geosci. Remote Sens. Mag. 9 (1) (2021) 53–81.
[33]
Meng X., Xiong Y., Shao F., Shen H., Sun W., et al., A large-scale benchmark data set for evaluating pansharpening performance: Overview and implementation, IEEE Geosci. Remote Sens. Mag. 9 (1) (2021) 18–52.
[34]
Carper W.J., Lillesand T.M., Kiefer R.W., The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data, Photogramm. Eng. Remote Sens. 56 (4) (1990) 459–467.
[35]
Chavez P.S., Slides S.C., Anderson J.A., Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic, Photogramm. Eng. Remote Sens. 57 (3) (1991) 295–303.
[36]
Laben C.A., Brower B.V., Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening, 2000, U.S. Patent 6 011 875, Jan. 4.
[37]
Ranchin T., Wald L., Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation, Photogramm. Eng. Remote Sens. 66 (1) (2000) 49–61.
[38]
Mallat S., A Wavelet Tour of Signal Processing, 3rd ed., Elsevier, 2008.
[39]
Zheng S., Shi W., Liu J., Tian J., Remote sensing image fusion using multiscale mapped LS-SVM, IEEE Trans. Geosci. Remote Sens. 46 (5) (2008) 1313–1322.
[40]
Xing Y., Wang M., Yang S., Zhang K., Pansharpening with multiscale geometric support tensor machine, IEEE Trans. Geosci. Remote Sens. 56 (5) (2018) 2503–2517.
[41]
Restaino R., Vivone G., Dalla Mura M., Chanussot J., Fusion of multispectral and panchromatic images based on morphological operators, IEEE Trans. Image Process. 25 (6) (2016) 2882–2895.
[42]
Li S., Kang X., Fang L., Hu J., Yin H., Pixel-level image fusion: A survey of the state of the art, Inf. Fusion 33 (2017) 100–112.
[43]
Ballester C., Caselles V., Igual L., Verdera J., A variational model for P+XS image fusion, Int. J. Comput. Vis. 69 (1) (2006) 43–58.
[44]
Yang S., Zhang K., Wang M., Learning low-rank decomposition for pan-sharpening with spatial–spectral offsets, IEEE Trans. Neural Netw. Learn. Syst. 29 (8) (2018) 3647–3657.
[45]
Ren C., He X., Nguyen T.Q., Single image super-resolution via adaptive high-dimensional non-local total variation and adaptive geometric feature, IEEE Trans. Image Process. 26 (1) (2017) 90–106.
[46]
Wang H., Cen Y., He Z., He Z., Zhao R., Zhang F., Reweighted low-rank matrix analysis with structural smoothness for image denoising, IEEE Trans. Image Process. 27 (4) (2018) 1777–1792.
[47]
LeCun Y., Bengio Y., Hinton G., Deep learning, Nature 521 (7553) (2015) 436–444.
[48]
Creswell A., White T., Dumoulin V., Arulkumaran K., Sengupta B., Bharath A.A., Generative adversarial networks: An overview, IEEE Signal Process. Mag. 35 (1) (2018) 53–65.
[49]
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., et al., Attention is all you need, in: NIPS, 2017, pp. 5998–6008.
[50]
Garzelli A., Nencini F., Capobianco L., Optimal MMSE pan sharpening of very high resolution multispectral images, IEEE Trans. Geosci. Remote Sens. 46 (1) (2008) 228–236.
[51]
Tu T., Huang P., Hung C., Chang C., A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery, IEEE Geosci. Remote Sens. Lett. 1 (4) (2015) 180–184.
[52]
Rahmani S., Strait M., Merkurjev D., Moeller M., Wittman T., An adaptive IHS pan-sharpening method, IEEE Geosci. Remote Sens. Lett. 7 (4) (2010) 746–750.
[53]
Leung Y., Liu J., Zhang J., An improved adaptive intensity-hue-saturation method for the fusion of remote sensing images, IEEE Geosci. Remote Sens. Lett. 11 (5) (2014) 985–989.
[54]
Ghahremani M., Ghassemian H., Nonlinear IHS: A promising method for pan-sharpening, IEEE Geosci. Remote Sens. Lett. 12 (11) (2016) 1606–1610.
[55]
Yang S., Wang M., Jiao L., Fusion of multispectral and panchromatic images based on support value transform and adaptive principal component analysis, Inf. Fusion 13 (2012) 177–184.
[56]
Shahdoosti H., Ghassemian H., Combining the spectral PCA and spatial PCA fusion methods by an optimal filter, Inf. Fusion 27 (2016) 150–160.
[57]
Kim Y., Kim M., Choi J., Kim Y., Image fusion of spectrally nonoverlapping imagery using SPCA and MTF-based filters, IEEE Geosci. Remote Sens. Lett. 14 (12) (2017) 2295–2299.
[58]
Duran J., Buades A., Restoration of pansharpened images by conditional filtering in the PCA domain, IEEE Geosci. Remote Sens. Lett. 16 (3) (2019) 442–446.
[59]
Aiazzi B., Baronti S., Selva M., Improving component substitution pansharpening through multivariate regression of MS+Pan data, IEEE Trans. Geosci. Remote Sens. 45 (10) (2007) 3230–3239.
[60]
Wang W., Jiao L., Yang S., Novel adaptive component-substitution-based pan-sharpening using particle swarm optimization, IEEE Geosci. Remote Sens. Lett. 12 (4) (2015) 781–785.
[61]
Garzelli A., Pansharpening of multispectral images based on nonlocal parameter optimization, IEEE Trans. Geosci. Remote Sens. 53 (4) (2015) 2096–2107.
[62]
Shahdoosti H., Javaheri N., Pansharpening of clustered MS and pan images considering mixed pixels, IEEE Geosci. Remote Sens. Lett. 14 (6) (2017) 826–830.
[63]
Imani M., Band dependent spatial details injection based on collaborative representation for pansharpening, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11 (12) (2018) 4994–5004.
[64]
Vivone G., Robust band-dependent spatial-detail approaches for panchromatic sharpening, IEEE Trans. Geosci. Remote Sens. 57 (9) (2019) 6421–6432.
[65]
Vivone G., Restaino R., Chanussot J., Full scale regression-based injection coefficients for panchromatic sharpening, IEEE Trans. Image Process. 27 (7) (2018) 3418–3430.
[66]
Vivone G., Marano S., Chanussot J., Pansharpening: Context-based generalized Laplacian pyramids by robust regression, IEEE Trans. Geosci. Remote Sens. 58 (9) (2020) 6152–6167.
[67]
Restaino R., Vivone G., Addesso P., Chanussot J., A pansharpening approach based on multiple linear regression estimation of injection coefficients, IEEE Geosci. Remote Sens. Lett. 17 (1) (2020) 102–106.
[68]
Addesso P., Vivone G., Restaino R., Chanussot J., A data-driven model-based regression applied to panchromatic sharpening, IEEE Trans. Image Process. 29 (2020) 7779–7793.
[69]
Otazu X., Gonzalez-Audicana M., Fors O., Nunez J., Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods, IEEE Trans. Geosci. Remote Sens. 43 (10) (2005) 2376–2385.
[70]
Vivone G., Alparone L., Garzelli A., Lolli S., Fast reproducible pansharpening based on instrument and acquisition modeling: AWLP revisited, Remote Sens. 11 (2019) 2315.
[71]
Lu X., Zhang J., Li T., Zhang Y., Pan-sharpening by multilevel interband structure modeling, IEEE Geosci. Remote Sens. Lett. 13 (6) (2016) 892–896.
[72]
Kallel A., Pansharpening: MTF-adjusted pansharpening approach based on coupled multiresolution decompositions, IEEE Trans. Geosci. Remote Sens. 53 (6) (2015) 3124–3145.
[73]
Yang Y., Wan C., Huang S., Lu H., Wan W., Pansharpening based on low-rank fuzzy fusion and detail supplement, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13 (2020) 5466–5479.
[74]
Shah V., Younan N., King R., Pansharpening: An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets, IEEE Trans. Geosci. Remote Sens. 46 (5) (2008) 1323–1335.
[75]
El-Mezouar M., Kpalma K., Taleb N., Ronsin J., A pan-sharpening based on the non-subsampled contourlet transform: Application to worldview-2 imagery, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 47 (5) (2014) 1806–1815.
[76]
Upla K., Joshi M., Gajjar P., An edge preserving multiresolution fusion: Use of contourlet transform and MRF prior, IEEE Trans. Geosci. Remote Sens. 53 (6) (2015) 3210–3220.
[77]
Li H., Liu F., Yang S., Zhang K., Su X., Jiao L., Refined pan-sharpening with NSCT and hierarchical sparse autoencoder, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9 (12) (2016) 5715–5725.
[78]
Dong L., Yang Q., Wu H., Xiao H., Xu M., High quality multi-spectral and panchromatic image fusion technologies based on curvelet transform, Neurocomputing 159 (2015) 268–274.
[79]
Devulapalli S., Krishnan R., Synthesized pansharpening using curvelet transform and adaptive neuro-fuzzy inference system, J. Appli. Remote Sensing 13 (3) (2019).
[80]
Shi Y., Yang X., Cheng T., Pansharpening of multispectral images using the nonseparable framelet lifting transform with high vanishing moments, Inf. Fusion 20 (2014) 213–224.
[81]
Wang J., Yang X., Zhu R., Random walks for pansharpening in complex tight framelet domain, IEEE Trans. Geosci. Remote Sens. 57 (7) (2019) 5121–5134.
[82]
Zhao Y., Wu B., A framelet-based SFIM method to pan-sharpen THEOS imagery, J. Indian Soc. Remote Sens. 47 (8) (2019) 1417–1429.
[83]
Shi C., Miao Q., Xu P., A novel algorithm of remote sensing image fusion based on shearlets and PCNN, Neurocomputing 117 (2013) 47–53.
[84]
Moonon A., Hu J., Li S., Remote sensing image fusion method based on nonsubsampled shearlet transform and sparse representation, Sens. Imaging 16 (2015) 23.
[85]
Yang Y., Wan W., Huang S., Yuan F., Remote sensing image fusion based on adaptive IHS and multiscale guided filter, IEEE Access 4 (2016) 4573–4582.
[86]
Yin H., Li S., Pansharpening with multiscale normalized nonlocal means filter: A two-step approach, IEEE Trans. Geosci. Remote Sens. 53 (10) (2015) 5734–5745.
[87]
Zhan K., Shi J., Wang H., Xie Y., Li Q., Computational mechanisms of pulse-coupled neural networks: A comprehensive review, Arch. Computa. Methods Eng. 24 (2017) 573–588.
[88]
Donoho D.L., Compressed sensing, IEEE Trans. Inform. Theory 52 (4) (2006) 1289–1306.
[89]
Ghulyani M., Arigovindan M., Fast roughness minimizing image restoration under mixed Poisson-Gaussian noise, IEEE Trans. Image Process. 30 (2021) 134–149.
[90]
Li S., Yang B., A new pan-sharpening method using a compressed sensing technique, IEEE Trans. Geosci. Remote Sens. 49 (2) (2011) 738–746.
[91]
Chen S., Donoho D., Saunders M., Atomic decomposition by basis pursuit, SIAM Rev. 43 (1) (2001) 129–159.
[92]
Li S., Yin H., Fang L., Remote sensing image fusion via sparse representations over learned dictionaries, IEEE Trans. Geosci. Remote Sens. 51 (9) (2013) 4779–4789.
[93]
Jiang C., Zhang H., Shen H., Zhang L., A practical compressed sensing-based pan-sharpening method, IEEE Geosci. Remote Sens. Lett. 9 (4) (2012) 629–633.
[94]
Cheng M., Wang C., Li J., Sparse representation based pansharpening using trained dictionary, IEEE Geosci. Remote Sens. Lett. 11 (1) (2014) 293–297.
[95]
Ghahremani M., Ghassemian H., A compressed-sensing-based pan-sharpening method for spectral distortion reduction, IEEE Trans. Geosci. Remote Sens. 54 (4) (2016) 2194–2206.
[96]
Zhu X., Bamler R., A sparse image fusion algorithm with application to pan-sharpening, IEEE Trans. Geosci. Remote Sens. 51 (5) (2013) 2827–2836.
[97]
Zhang K., Zhang F., Yang S., Lolli S., Fusion of multispectral and panchromatic images via spatial weighted neighbor embedding, Remote Sens. 11 (2019) 557.
[98]
Wang W., Jiao L., Yang S., Rong K., Distributed compressed sensing-based pan-sharpening with hybrid dictionary, Neurocomputing 155 (2015) 320–333.
[99]
Deng L., Vivone G., Guo W., Dalla Mura M., Chanussot J., A variational pansharpening approach based on reproducible kernel Hilbert space and Heaviside function, IEEE Trans. Image Process. 27 (9) (2018) 4330–4344.
[100]
Ayas S., Gormus E., Ekinci M., An efficient pan sharpening via texture based dictionary learning and sparse representation, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11 (7) (2008) 2448–2460.
[101]
Zhang K., Wang M., Yang S., Jiao L., Convolution structure sparse coding for fusion of panchromatic and multispectral images, IEEE Trans. Geosci. Remote Sens. 57 (2) (2019) 1117–1130.
[102]
Wohlberg B., Efficient algorithms for convolutional sparse representations, IEEE Trans. Image Process. 25 (1) (2016) 301–315.
[103]
Zhang K., Zhang F., Feng Z., Sun J., Wu Q., Fusion of panchromatic and multispectral images using multiscale convolution sparse decomposition, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14 (2021) 426–439.
[104]
Rudin L., Osher S., Fatemi E., Nonlinear total variation based noise removal algorithms, Physica D 60 (1992) 259–269.
[105]
Palsson F., Sveinsson J., Ulfarsson M., A new pansharpening algorithm based on total variation, IEEE Geosci. Remote Sens. Lett. 11 (1) (2014) 318–322.
[106]
Lotfi M., Ghassemian H., A new variational model in texture space for pansharpening, IEEE Geosci. Remote Sens. Lett. 15 (8) (2018) 1269–1273.
[107]
Liu P., Xiao L., Tang S., A new geometry enforcing variational model for pan-sharpening, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9 (12) (2016) 5726–5739.
[108]
Deng L., Feng M., Tai X., The fusion of panchromatic and multispectral remote sensing images via tensor-based sparse modeling and hyper-Laplacian prior, Inf. Fusion 52 (2019) 76–89.
[109]
Fang F., Li F., Shen C., Zhang G., A variational approach for pan-sharpening, IEEE Trans. Image Process. 22 (7) (2013) 2822–2834.
[110]
Fu X., Lin Z., Huang Y., Ding X., A variational pan-sharpening with local gradient constraints, in: IEEE CVPR, 2019, pp. 10265–10274.
[111]
Meng X., Shen H., Yuan Q., Li H., Zhang L., Sun W., Pansharpening for cloud-contaminated very high-resolution remote sensing images, IEEE Trans. Geosci. Remote Sens. 57 (5) (2019) 2840–2854.
[112]
Wang T., Fang F., Li F., Zhang G., High-quality bayesian pansharpening, IEEE Trans. Image Process. 28 (1) (2019) 227–239.
[113]
Chen C., Li Y., Liu W., Huang J., SIRF: Simultaneous satellite image registration and fusion in a unified framework, IEEE Trans. Image Process. 24 (11) (2015) 4213–4224.
[114]
Liu P., Xiao L., Zhang J., Naz B., Spatial-hessian-feature-guided variational model for pan-sharpening, IEEE Trans. Geosci. Remote Sens. 54 (4) (2016) 2235–2253.
[115]
Liu P., Xiao Liang, Multicomponent driven consistency priors for simultaneous decomposition and pansharpening, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 12 (11) (2019) 4589–4605.
[116]
Tian X., Chen Y., Yang C., Gao X., Ma J., A variational pansharpening method based on gradient sparse representation, IEEE Signal Process. Lett. 27 (2020) 1180–1184.
[117]
Wright J., Ganesh A., Rao S., Peng Y., Ma Y., Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization, in: NIPS, 2009, pp. 2080–2088.
[118]
Zhou T., Tao D., Godec: Randomized low-rank and sparse matrix decomposition in noisy case, in: ICML, 2011, pp. 33–40.
[119]
Rong K., Jiao L., Wang S., Liu F., Pansharpening based on low-rank and sparse decomposition, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7 (12) (2014) 4793–4805.
[120]
Palsson F., Ulfarsson M., Sveinsson J., Model-based reduced-rank pansharpening, IEEE Geosci. Remote Sens. Lett. 17 (4) (2020) 656–660.
[121]
He X., Condat L., Bioucas-Dias J., Chanussot J., Xia Junshi, A new pansharpening method based on spatial and spectral sparsity priors, IEEE Trans. Image Process. 23 (9) (2014) 4160–4164.
[122]
Liu P., Xiao L., Li T., A variational pan-sharpening method based on spatial fractional-order geometry and spectral-spatial low-rank priors, IEEE Trans. Geosci. Remote Sens. 56 (3) (2018) 1788–1820.
[123]
Zhang F., Zhang H., Zhang K., Xing Y., Sun J., Wu Q., Exploiting low-rank and sparse properties in strided convolution matrix for pansharpening, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14 (2021) 2649–2661.
[124]
Wang W., Jiao L., Yang S., Fusion of multispectral and panchromatic images via sparse representation and local autoregressive model, Inf. Fusion 20 (2014) 73–87.
[125]
Fu Z., Zhao Y., Xu Y., Xu L., Xu J., Gradient structural similarity based gradient filtering for multi-modal image fusion, Inf. Fusion 53 (2020) 251–268.
[126]
Khademi G., Ghassemian H., Incorporating an adaptive image prior model into Bayesian fusion of multispectral and panchromatic images, IEEE Geosci. Remote Sens. Lett. 15 (6) (2018) 917–921.
[127]
Duran J., Buades A., Coll B., Sbert C., A nonlocal variational model for pansharpening image fusion, SIAM J. Imag. Sci. 7 (2) (2014) 761–796.
[128]
Zhang K., Wang M., Yang S., Xing Y., Qu R., Fusion of panchromatic and multispectral images via coupled sparse non-negative matrix factorization, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9 (12) (2016) 5740–5747.
[129]
Krizhevsky A., Sutskever I., Hinton G.E., ImageNet classification with deep convolutional neural networks, in: NIPS, 2012, pp. 1106–1114.
[130]
LeCun Y., Bengio Y., Hinton G., Deep learning, Nature 521 (2015) 436–444.
[131]
Zhang H., Xu H., Tian X., Jiang J., Ma J., Image fusion meets deep learning: A survey and perspective, Inf. Fusion 76 (2021) 323–336.
[132]
Abdar M., Pourpanah F., Hussain S., Rezazadegan D., et al., A review of uncertainty quantification in deep learning: Techniques, applications and challenges, Inf. Fusion 76 (2021) 243–297.
[133]
Luengo J., Moreno R., Sevillano I., Charte D., et al., A tutorial on the segmentation of metallographic images: Taxonomy, new MetalDAM dataset, deep learning-based ensemble model, experimental analysis and challenges, Inf. Fusion 78 (2022) 232–253.
[134]
Martinez A.D., Ser J.D., Villar-Rodriguez E., Osaba E., et al., Lights and shadows in evolutionary deep learning: Taxonomy, critical methodological analysis, cases of study, learned lessons, recommendations and challenges, Inf. Fusion 67 (2021) 161–194.
[135]
Piccialli F., Somma V.D., Giampaolo F., Cuomo S., Fortino G., A survey on deep learning in medicine: Why, how and when?, Inf. Fusion 66 (2021) 111–137.
[136]
Zhang K., Zuo W., Chen Y., Meng D., Zhang L., Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process. 26 (7) (2017) 3142–3155.
[137]
He K., Zhang X., Ren S., Sun J., Deep residual learning for image recognition, in: IEEE CVPR, 2016, pp. 770–778.
[138]
Dong C., Loy C., He K., Tang X., Image super-resolution using deep convolutional networks, IEEE Trans. Pattern Anal. Mach. Intell. 38 (2) (2016) 295–307.
[139]
Ren D., Zhang K., Wang Q., Hu Q., Zuo W., Neural blind deconvolution using deep priors, in: IEEE CVPR, 2020, pp. 3338–3347.
[140]
Masi G., Cozzolino D., Verdoliva L., Scarpa G., Pansharpening by convolutional neural networks, Remote Sens. 8 (2016) 594.
[141]
Scarpa G., Vitale S., Cozzolino D., Target-adaptive CNN-based pansharpening, IEEE Trans. Geosci. Remote Sens. 56 (8) (2018) 5443–5457.
[142]
Yang J., Fu X., Hu Y., Huang Y., Ding X., Paisley J., PanNet: A deep network architecture for pan-sharpening, in: IEEE ICCV, 2017, pp. 5449–5457.
[143]
Fu X., Wang W., Huang Y., Ding X., Paisley J., Deep multiscale detail networks for multiband spectral image sharpening, IEEE Trans. Neural Netw. Learn. Syst. 32 (5) (2021) 2090–2104.
[144]
Wei Y., Yuan Q., Shen H., Zhang L., Boosting the accuracy of multispectral image pansharpening by learning a deep residual network, IEEE Geosci. Remote Sens. Lett. 14 (10) (2017) 1795–1799.
[145]
Jiang M., Shen H., Li J., Yuan Q., Zhang L., A differential information residual convolutional neural network for pansharpening, ISPRS J. Photogram. Remote Sens. 163 (2020) 257–271.
[146]
Benzenati T., Kallel A., Kessentini Y., Two stages pan-sharpening details injection approach based on very deep residual networks, IEEE Trans. Geosci. Remote Sens. 59 (6) (2021) 4984–4992.
[147]
Yao W., Zeng Z., Lian C., Tang H., Pixel-wise regression using U-net and its application on pansharpening, Neurocomputing 312 (2018) 364–371.
[148]
Wu X., Huang T., Deng L., Zhang T., Dynamic cross feature fusion for remote sensing pansharpening, in: IEEE ICCV, 2021, pp. 14687–14696.
[149]
Diao W., Zhang F., Wang H., Wan W., Sun J., Zhang K., HLF-net: Pansharpening based on high- and low-frequency fusion networks, IEEE Geosci. Remote Sens. Lett. 19 (2022).
[150]
Yuan Q., Wei Y., Meng X., Shen H., Zhang L., A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11 (3) (2018) 978–989.
[151]
Hu J., H P., Kang X., Zhang H., Fan S., Pan-sharpening via multiscale dynamic convolutional neural network, IEEE Trans. Geosci. Remote Sens. 59 (3) (2021) 2231–2243.
[152]
Lei D., Huang Y., Zhang L., Li W., Multibranch feature extraction and feature multiplexing network for pansharpening, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[153]
He L., Rao Y., Li J., Chanussot J., Plaza A., Zhu J., Li B., Pansharpening via detail injection based convolutional neural networks, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 12 (4) (2019) 1188–1204.
[154]
Deng L., Vivone G., Jin C., Chanussot J., Detail injection-based deep convolutional neural networks for pansharpening, IEEE Trans. Geosci. Remote Sens. 59 (8) (2021) 6995–7010.
[155]
Lei D., Chen H., Zhang L., Li W., NLRNet: An efficient nonlocal attention resnet for pansharpening, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[156]
Imani M., Texture feed based convolutional neural network for pansharpening, Neurocomputing 398 (2020) 117–130.
[157]
Jin C., Deng L., Huang T., Vivone G., Laplacian pyramid networks: A new approach for multispectral pansharpening, Inf. Fusion 78 (2022) 158–170.
[158]
Ma J., Yu W., Chen C., Liang P., Guo X., Jiang J., Pan-GAN: An unsupervised pan-sharpening method for remote sensing image fusion, Inf. Fusion 62 (2020) 110–120.
[159]
Liu X., Wang Y., Liu Q., PSGAN: A generative adversarial network for remote sensing image, in: IEEE ICIP, 2018, pp. 873–877.
[160]
Goodfellow I., Pouget-Abadie J., Mirza M., et al., Generative adversarial nets, in: NIPS, 2014, pp. 2672–2680.
[161]
Shao Z., Lu Z., Ran M., Fang L., Zhou J., Zhang Y., Residual encoder–decoder conditional generative adversarial network for pansharpening, IEEE Geosci. Remote Sens. Lett. 17 (9) (2020) 1573–1577.
[162]
Liu X., Liu Q., Wang Y., Remote sensing image fusion based on two-stream fusion network, Inf. Fusion 55 (2020) 1–15.
[163]
Wei J., Xu Y., Cai W., Wu Z., Chanussot J., Wei Z., A two-stream multiscale deep learning architecture for pan-sharpening, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13 (2020) 5455–5465.
[164]
Ozcelik F., Alganci U., Sertel E., Unal G., Rethinking CNN-based pansharpening: Guided colorization of panchromatic images via GANs, IEEE Trans. Geosci. Remote Sens. 21 (4) (2021) 3486–3501.
[165]
Fu S., Meng W., Jeon G., Chehri A., Zhang R., Yang X., Two-path network with feedback connections for pan-sharpening in remote sensing, Remote Sens. 12 (2020) 1674.
[166]
Wang D., Li Y., Ma L., Bai Z., Chan J., Going deeper with densely connected convolutional neural networks for multispectral pansharpening, Remote Sens. 11 (2020) 2608.
[167]
Zhang K., Wang A., Zhang F., Diao W., Sun J., Bruzzone L., Spatial and spectral extraction network with adaptive feature fusion for pansharpening, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[168]
Zhang Y., Liu C., Sun M., Ou Y., Pan-sharpening using an efficient bidirectional pyramid network, IEEE Trans. Geosci. Remote Sens. 57 (8) (2019) 5549–5563.
[169]
Luo S., Zhou S., Feng Y., Xie J., Pansharpening via unsupervised convolutional neural networks, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13 (2020) 4295–4310.
[170]
Yang Y., Tu W., Yang S., Lu H., Wan W., Gan L., Dual-stream convolutional neural network with residual information enhancement for pansharpening, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[171]
Uezato T., Hong D., Yokoya N., He W., Guided deep decoder: Unsupervised image pair fusion, in: ECCV, 2020, pp. 87–102.
[172]
Diao W., Zhang F., wang H., Sun J., Zhang K., Pansharpening via triplet attention network with information interaction, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 15 (2022) 3576–3588.
[173]
Lei D., Chen P., Zhang L., Li W., MCANet: A multidimensional channel attention residual neural network for pansharpening, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[174]
Su X., Li J., Hua Z., Attention-based and staged iterative networks for pansharpening of remote sensing images, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[175]
Chen S., Qi H., Nan K., Pansharpening via super-resolution iterative residual network with a cross-scale learning strategy, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[176]
Zhang H., Wang H., Tian X., Ma J., P2Sharpen: A progressive pansharpening network with deep spectral transformation, Inf. Fusion 91 (2023) 103–122.
[177]
Wang D., Zhang P., Bai Y., Li Y., MetaPan: Unsupervised adaptation with meta-learning for multispectral pansharpening, IEEE Geosci. Remote Sens. Lett. 19 (2022).
[178]
Huang W., Xiao L., Wei Z., Liu H., Tang S., A new pan-sharpening method with deep neural networks, IEEE Geosci. Remote Sens. Lett. 12 (5) (2015) 1037–1041.
[179]
Xing Y., Wang M., Yang S., Jiao L., Pan-sharpening via deep metric learning, ISPRS J. Photogram. Remote Sens. 145 (2018) 165–183.
[180]
Xu H., Ma J., Shao Z., Zhang H., Jiang J., Guo X., SDPNet: A deep network for pan-sharpening with enhanced information representation, IEEE Trans. Geosci. Remote Sens. 59 (5) (2021) 4120–4134.
[181]
Han K., Wang Y., Chen H., Chen X., et al., A survey on vision transformer, IEEE Trans. Pattern Anal. Mach. Intell. Early Access (2022) 1–20.
[182]
Zhang F., Zhang K., Sun J., Multiscale spatial–spectral interaction transformer for pan-sharpening, Remote Sens. 14 (2022) 1736.
[183]
Li S., Guo Q., Li A., Pan-sharpening based on CNN+ pyramid transformer by using no-reference loss, Remote Sens. 14 (2022) 624.
[184]
Zhou M., Fu X., Huang J., Zhao F., Liu A., Wang R., Effective pan-sharpening with transformer and invertible neural network, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[185]
Zhou M., Huang J., Fang Y., Fu X., Liu A., Pan-sharpening with customized transformer and invertible neural network, in: AAAI, 2022, pp. 1–9.
[186]
Meng X., Shao F., Hua Z., Vision transformer for pansharpening, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[187]
Zhang K., Li Z., Zhang F., Wan W, Sun Jiande, Pan-sharpening based on transformer with redundancy reduction, IEEE Geosci. Remote Sens. Lett. 19 (2022).
[188]
Zhou H., Liu Q., Wang Y., Panformer: A transformer based model for pan-sharpening, 2022, pp. 1–6. arxiv.
[189]
Tian X., Li K., Zhou W., Ma J., VP-net: An interpretable deep network for variational pansharpening, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[190]
Xu S., Zhang J., Zhao Z., Sun K., Liu J., Zhang C., Deep gradient projection networks for pan-sharpening, in: IEEE CVPR, 2021, pp. 1366–1375.
[191]
Yin H., PSCSC-net: A deep coupled convolutional sparse coding network for pansharpening, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[192]
Cao X., Chen Y., Cao W., Proximal PanNet: A model-based deep network for pansharpening, in: AAAI, 2022, pp. 1–9.
[193]
Feng Y., Liu J., Chen K., Wang B., Zhao Z., Optimization algorithm unfolding deep networks of detail injection model for pansharpening, IEEE Geosci. Remote Sens. Lett 19 (2022).
[194]
Yin H., Panchromatic side sparsity model-based deep unfolding network for pansharpening, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[195]
Palsson F., Sveinsson J., Ulfarsson M., Benediktsson J., Quantitative quality evaluation of pansharpened imagery: Consistency versus synthesis, IEEE Trans. Geosci. Remote Sens. 54 (3) (2016) 1247–1259.
[196]
Han J., Ding J., Li J., Xia G., Align deep features for oriented object detection, IEEE Trans. Geosci. Remote Sens. 60 (2022).
[197]
Wang X., Zhu D., Li G., Zhang X., He Y., Proposal-copula-based fusion of spaceborne and airborne SAR images for ship target detection, Inf. Fusion 77 (2022) 247–260.
[198]
Rasti B., Ghamisi P., Remote sensing image classification using subspace sensor fusion, Inf. Fusion 64 (2020) 121–130.
[199]
Zhu H., Ma W., Li L., Jiao L., Yang S., Hou B., A dual-branch attention fusion deep network for multiresolution remote-sensing image classification, Inf. Fusion 58 (2020) 116–131.
[200]
Wang Z., Bovik A., A universal image quality index, IEEE Signal Process. Lett. 9 (3) (2002) 81–84.
[201]
Zhou J., Civco D.L., Silander J.A., A wavelet transform method to merge landsat TM and SPOT panchromatic data?, Int. J. Remote Sens. 19 (4) (1998) 743–757.
[202]
Wang Z., Bovik A., Sheikh H., Simoncelli E., Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process. 13 (4) (2004) 600–612.
[203]
R.H. Yuhas, A.F. Goetz, J.W. Boardman, Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm, in: Proc. Summaries 3rd Annu. JPL Airborne Geosci. Workshop, 1992, pp. 147–149.
[204]
Choi M., A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter, IEEE Trans. Geosci. Remote Sens. 44 (6) (2006) 1672–1682.
[205]
Chang C.-I., Spectral information divergence for hyperspectral image analysis, in: IEEE IGARSS, 1999, pp. 509–511.
[206]
Alparone L., Baronti S., Garzelli A., Nencini F., A global quality measurement of pan-sharpened multispectral imagery, IEEE Geosci. Remote Sens. Lett. 1 (4) (2004) 313–317.
[207]
L. Wald, Quality of high resolution synthesized images: Is there a simple criterion?, in: Proc. 3rd Conf. Fusion Earth Data, 2000, pp. 99–105.
[208]
Alparone L., Aiazzi B., Baronti S., Garzelli A., Nencini F., Selva M., Multispectral and panchromatic data fusion assessment without reference, Photogramm. Eng. Remote Sens. 74 (2) (2008) 193–200.
[209]
Khan M., Alparone L., Chanussot J., Pansharpening quality assessment using the modulation transfer functions of instruments, IEEE Trans. Geosci. Remote Sens. 47 (11) (2009) 3880–3891.
[210]
Palubinskas G., Joint quality measure for evaluation of pansharpening accuracy, Remote Sens. 7 (2015) 9292–9310.
[211]
Vivone G., Restaino R., Chanussot J., A Bayesian procedure for full-resolution quality assessment of pansharpened products, IEEE Trans. Geosci. Remote Sens. 56 (8) (2018) 4820–4834.
[212]
Vivone G., Addesso P., Chanussot J., A combiner-based full resolution quality assessment index for pansharpening, IEEE Geosci. Remote Sens. Lett. 16 (3) (2019) 437–441.
[213]
Carl R., Santurri L., Aiazzi B., Baronti S., Full-scale assessment of pansharpening through polynomial fitting of multiscale measurements, IEEE Trans. Geosci. Remote Sens. 53 (12) (2015) 6344–6355.
[214]
Zhou B., Shao F., Meng X., Fu R., Ho Y., No-reference quality assessment for pansharpened images via opinion-unaware learning, IEEE Access 7 (2019) 40388–40401.
[215]
Cheng G., Zhou P., Han J., Learning rotation invariant convolutional neural networks for object detection in VHR optical remote sensing images, IEEE Trans. Geosci. Remote Sens. 54 (12) (2016) 7405–7415.
[216]
Wang M., Dong Z., Cheng Y., Li D., Optimal segmentation of high-resolution remote sensing image by combining superpixels with the minimum spanning tree, IEEE Trans. Geosci. Remote Sens. 56 (1) (2018) 228–238.
[217]
Bovolo F., Bruzzone L., Capobianco L., Garzelli A., Marchesi S., Nencini F., Analysis of the effects of pansharpening in change detection on VHR images, IEEE Geosci. Remote Sens. Lett. 7 (1) (2010) 53–57.
[218]
Liu Q., Meng X., Shao F., Li S., Supervised-unsupervised combined deep convolutional neural networks for high-fidelity pansharpening, Inf. Fusion 89 (2023) 292–304.
[219]
Yang Y., Sun J., Li H., Xu Z., ADMM-CSNet: A deep learning approach for image compressive sensing, IEEE Trans. Pattern Anal. Mach. Intell. 42 (3) (2020) 521–538.
[220]
Wang L., Sun C., Zhang M., Fu Y., Huang H., DNU: Deep non-local unrolling for computational spectral imaging, in: IEEE CVPR, 2020, pp. 1661–1671.
[221]
Y. Xie, Z. Xu, J. Zhang, Z. Wang, et al., Self-supervised learning of graph neural networks: A unified review, IEEE Trans. Pattern Anal. Mach. Intell. Early Access 1–20.
[222]
W. Diao, F. Zhang, J. Sun, Y. Xing, K. Zhang, L. Bruzzone, ZeRGAN: Zero-reference GAN for fusion of multispectral and panchromatic images, IEEE Trans. Neural Netw. Learn. Syst. Early Access 1–16.

Cited By

View all
  • (2024)Deep Rank-N Decomposition Network for Image FusionIEEE Transactions on Multimedia10.1109/TMM.2024.336615026(7335-7348)Online publication date: 16-Feb-2024
  • (2024)Squeezing adaptive deep learning methods with knowledge distillation for on-board cloud detectionEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.107835132:COnline publication date: 1-Jun-2024

Index Terms

  1. Panchromatic and multispectral image fusion for remote sensing and earth observation: Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Information Fusion
          Information Fusion  Volume 93, Issue C
          May 2023
          470 pages

          Publisher

          Elsevier Science Publishers B. V.

          Netherlands

          Publication History

          Published: 01 May 2023

          Author Tags

          1. Image fusion
          2. Pan-sharpening
          3. Image quality evaluation
          4. Multispectral image
          5. Panchromatic image

          Qualifiers

          • Short-survey

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 13 Nov 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)Deep Rank-N Decomposition Network for Image FusionIEEE Transactions on Multimedia10.1109/TMM.2024.336615026(7335-7348)Online publication date: 16-Feb-2024
          • (2024)Squeezing adaptive deep learning methods with knowledge distillation for on-board cloud detectionEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.107835132:COnline publication date: 1-Jun-2024

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media