Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Pseudo-unknown uncertainty learning for open set object detection

Published: 18 November 2024 Publication History

Abstract

Despite the significant strides made by modern object detectors in the closed-set scenarios, open-set object detection (OSOD) remains a formidable challenge. This is particularly evident in misclassifying objects from unknown categories into pre-existing known classes or ignored background classes. A novel approach called PUDet (Pseudo-unknown Uncertainty Detector) based on Evidential Deep Learning (EDL) is proposed, incorporating two modules: the Class-wise Contrastive Learning Network (CCL) and the Uncertainty-Aware Labeling Network (UAL). For CCL, the module leverages class-wise contrastive learning to encourage intra-class compactness and inter-class separation, thereby reducing the overlap between known and unknown classes. Simultaneously, it establishes compact boundaries for known classes and generates pseudo-unknown candidates to facilitate UAL for better learning pseudo-unknown uncertainty. For UAL, the Weight-Impact EDL (WI-EDL) approach is introduced to enhance uncertainty in edge samples by collecting categorical evidence and weight impact. Subsequently, UAL refines uncertainty via localization quality calibration, facilitating the mining of pseudo-unknown samples from foreground and background proposals to construct compact boundaries between known and unknown categories. In comparison to the state of the arts, the proposed PUDet showcases a substantial improvement, achieving a reduction in Absolute Open-Set Errors by 13%–16% across six OSOD benchmarks.

Highlights

Class-wise Contrastive Learning Network constructs compact known class boundaries, obtaining pseudo-unknown candidates.
Uncertainty Aware Labeling Network learns the uncertainty of pseudo-unknown samples via weight-impact evidential deep learning.
The accurate boundary between known and unknown categories is constructed.

References

[1]
Girshick R.B., Donahue J., Darrell T., Malik J., Rich feature hierarchies for accurate object detection and semantic segmentation, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, IEEE Computer Society, 2014, pp. 580–587,.
[2]
Ren S., He K., Girshick R., Sun J., Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell. 39 (6) (2017) 1137–1149,.
[3]
Redmon J., Divvala S.K., Girshick R.B., Farhadi A., You only look once: Unified, real-time object detection, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, IEEE Computer Society, 2016, pp. 779–788,.
[4]
Tian Z., Shen C., Chen H., He T., FCOS: fully convolutional one-stage object detection, in: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, IEEE, 2019, pp. 9626–9635,.
[5]
Han J., Ren Y., Ding J., Pan X., Yan K., Xia G.-S., Expanding low-Density Latent Regions for open-set object detection, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, la, USA, June 18-24, 2022, IEEE, 2022, pp. 9581–9590,.
[6]
Scheirer W.J., Rocha A.d., Sapkota A., Boult T.E., Toward open set recognition, IEEE Trans. Pattern Anal. Mach. Intell. 35 (7) (2013) 1757–1772,.
[7]
Dhamija A.R., Günther M., Ventura J., Boult T.E., The overlooked elephant of object detection: Open set, in: IEEE Winter Conference on Applications of Computer Vision, WACV 2020, Snowmass Village, CO, USA, March 1-5, 2020, IEEE, 2020, pp. 1010–1019,.
[8]
Miller D., Nicholson L., Dayoub F., Sünderhauf N., Dropout sampling for robust object detection in open-set conditions, in: 2018 IEEE International Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018, IEEE, 2018, pp. 1–7,.
[9]
Zhou Z., Yang Y., Wang Y., Xiong R., Open-set object detection using classification-free object proposal and instance-level contrastive learning, IEEE Robot. Autom. Lett. 8 (3) (2023) 1691–1698,.
[10]
Du X., Wang Z., Cai M., Li Y., VOS: learning what you don’t know by virtual outlier synthesis, in: The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022, OpenReview.net, 2022, URL https://openreview.net/forum?id=TW7d65uYu5M.
[11]
Joseph K.J., Khan S.H., Khan F.S., Balasubramanian V.N., Towards open world object detection, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, June 19-25, 2021, Computer Vision Foundation / IEEE, 2021, pp. 5830–5840,. URL https://openaccess.thecvf.com/content/CVPR2021/html/Joseph_Towards_Open_World_Object_Detection_CVPR_2021_paper.html.
[12]
Bendale A., Boult T.E., Towards open set deep networks, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, IEEE Computer Society, 2016, pp. 1563–1572,.
[13]
Neal L., Olson M.L., Fern X.Z., Wong W.-K., Li F., Open set learning with counterfactual images, in: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (Eds.), Computer Vision - ECCV 2018 - 15th European Conference, in: Lecture Notes in Computer Science, Vol. 11210, Munich, Germany, September 8-14, 2018, Proceedings, Part VI, Springer, 2018, pp. 620–635,.
[14]
Yoshihashi R., Shao W., Kawakami R., You S., Iida M., Naemura T., Classification-reconstruction learning for open-set recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, Computer Vision Foundation / IEEE, 2019, pp. 4016–4025,. URL http://openaccess.thecvf.com/content_CVPR_2019/html/Yoshihashi_Classification-Reconstruction_Learning_for_Open-Set_Recognition_CVPR_2019_paper.html.
[15]
Sun X., Yang Z., Zhang C., Ling K.V., Peng G., Conditional Gaussian distribution learning for open set recognition, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, Computer Vision Foundation / IEEE, 2020, pp. 13477–13486,. URL https://openaccess.thecvf.com/content_CVPR_2020/html/Sun_Conditional_Gaussian_Distribution_Learning_for_Open_Set_Recognition_CVPR_2020_paper.html.
[16]
Yang H.-M., Zhang X.-Y., Yin F., Yang Q., Liu C.-L., Convolutional prototype network for open set recognition, IEEE Trans. Pattern Anal. Mach. Intell. 44 (5) (2022) 2358–2370,.
[17]
Xia Z., Wang P., Dong G., Liu H., Spatial location constraint prototype loss for open set recognition, Comput. Vis. Image Underst. 229 (2023),.
[18]
Miller D., Dayoub F., Milford M., Sünderhauf N., Evaluating merging strategies for sampling-based uncertainty techniques in object detection, in: International Conference on Robotics and Automation, ICRA 2019, Montreal, QC, Canada, May 20-24, 2019, IEEE, 2019, pp. 2348–2354,.
[19]
Gal Y., Ghahramani Z., Dropout as a Bayesian approximation: Representing model uncertainty in deep learning, in: Balcan M.-F., Weinberger K.Q. (Eds.), Proceedings of the 33nd International Conference on Machine Learning, in: JMLR Workshop and Conference Proceedings, Vol. 48, ICML 2016, New York City, NY, USA, June 19-24, 2016, JMLR.org, 2016, pp. 1050–1059. URL http://proceedings.mlr.press/v48/gal16.html.
[20]
Zheng J., Li W., Hong J., Petersson L., Barnes N., Towards open-set object detection and discovery, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2022, New Orleans, la, USA, June 19-20, 2022, IEEE, 2022, pp. 3960–3969,.
[21]
Wu Z., Lu Y., Chen X., Wu Z., Kang L., Yu J., UC-OWOD: unknown-classified open world object detection, in: Avidan S., Brostow G.J., Cissé M., Farinella G.M., Hassner T. (Eds.), Computer Vision - ECCV 2022 - 17th European Conference, in: Lecture Notes in Computer Science, Vol. 13670, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part X, Springer, 2022, pp. 193–210,.
[22]
Zhao X., Liu X., Shen Y., Qiao Y., Ma Y., Wang D., Revisiting open world object detection, CoRR (2022) arXiv:2201.00471.
[23]
Hendrycks D., Basart S., Mazeika M., Zou A., Kwon J., Mostajabi M., Steinhardt J., Song D., Scaling out-of-distribution detection for real-world settings, in: Chaudhuri K., Jegelka S., Song L., Szepesvári C., Niu G., Sabato S. (Eds.), International Conference on Machine Learning, in: Proceedings of Machine Learning Research, Vol. 162, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, PMLR, 2022, pp. 8759–8773. URL https://proceedings.mlr.press/v162/hendrycks22a.html.
[24]
Sun Y., Guo C., Li Y., ReAct: Out-of-distribution detection with rectified activations, in: Ranzato M., Beygelzimer A., Dauphin Y.N., Liang P., Vaughan J.W. (Eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, Virtual, 2021, pp. 144–157. URL https://proceedings.neurips.cc/paper/2021/hash/01894d6f048493d2cacde3c579c315a3-Abstract.html.
[25]
Vaze S., Han K., Vedaldi A., Zisserman A., Open-set recognition: A good closed-set classifier is all you need, in: The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022, OpenReview.net, 2022, URL https://openreview.net/forum?id=5hLP5JY9S2d.
[26]
Chan R., Rottmann M., Gottschalk H., Entropy maximization and meta classification for out-of-distribution detection in semantic segmentation, in: 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021, IEEE, 2021, pp. 5108–5117,.
[27]
Holub A., Perona P., Burl M.C., Entropy-based active learning for object recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2008, Anchorage, AK, USA, 23-28 June, 2008, IEEE Computer Society, 2008, pp. 1–8,.
[28]
Liu W., Wang X., Owens J.D., Li Y., Energy-based out-of-distribution detection, in: Larochelle H., Ranzato M., Hadsell R., Balcan M.-F., Lin H.-T. (Eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual, 2020, URL https://proceedings.neurips.cc/paper/2020/hash/f5496252609c43eb8a3d147ab9b9c006-Abstract.html.
[29]
Sensoy M., Kaplan L.M., Kandemir M., Evidential deep learning to quantify classification uncertainty, in: Bengio S., Wallach H.M., Larochelle H., Grauman K., Cesa-Bianchi N., Garnett R. (Eds.), Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, MontrÉAl, Canada, 2018, pp. 3183–3193. URL https://proceedings.neurips.cc/paper/2018/hash/a981f2b708044d6fb4a71a1463242520-Abstract.html.
[30]
Amini A., Schwarting W., Soleimany A., Rus D., Deep evidential regression, in: Larochelle H., Ranzato M., Hadsell R., Balcan M.-F., Lin H.-T. (Eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual, 2020, URL https://proceedings.neurips.cc/paper/2020/hash/aab085461de182608ee9f607f3f7d18f-Abstract.html.
[31]
Chen G., Qiao L., Shi Y., Peng P., Li J., Huang T., Pu S., Tian Y., Learning open set network with discriminative reciprocal points, in: Vedaldi A., Bischof H., Brox T., Frahm J.-M. (Eds.), Computer Vision - ECCV 2020 - 16th European Conference, in: Lecture Notes in Computer Science, Vol. 12348, Glasgow, UK, August 23-28, 2020, Proceedings, Part III, Springer, 2020, pp. 507–522,.
[32]
Chen G., Peng P., Wang X., Tian Y., Adversarial reciprocal points learning for open set recognition, IEEE Trans. Pattern Anal. Mach. Intell. 44 (11) (2022) 8065–8081,.
[33]
Koh P.W., Liang P., Understanding black-box predictions via influence functions, in: Precup D., Teh Y.W. (Eds.), Proceedings of the 34th International Conference on Machine Learning, in: Proceedings of Machine Learning Research, Vol. 70, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, PMLR, 2017, pp. 1885–1894. URL http://proceedings.mlr.press/v70/koh17a.html.
[34]
Zhou D.-W., Ye H.-J., Zhan D.-C., Learning placeholders for open-set recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, June 19-25, 2021, Computer Vision Foundation / IEEE, 2021, pp. 4401–4410,. URL https://openaccess.thecvf.com/content/CVPR2021/html/Zhou_Learning_Placeholders_for_Open-Set_Recognition_CVPR_2021_paper.html.
[35]
Vaze S., Han K., Vedaldi A., Zisserman A., Open-set recognition: A good closed-set classifier is all you need, in: The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022, OpenReview.net, 2022, URL https://openreview.net/forum?id=5hLP5JY9S2d.
[36]
Everingham M., Gool L.V., Williams C.K.I., Winn J.M., Zisserman A., The pascal visual object classes (VOC) challenge, Int. J. Comput. Vis. 88 (2) (2010) 303–338,.
[37]
Lin T.-Y., Maire M., Belongie S.J., Hays J., Perona P., Ramanan D., Dollár P., Zitnick C.L., Microsoft COCO: common objects in context, in: Fleet D.J., Pajdla T., Schiele B., Tuytelaars T. (Eds.), Computer Vision - ECCV 2014 - 13th European Conference, in: Lecture Notes in Computer Science, Vol. 8693, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, Springer, 2014, pp. 740–755,.
[38]
He K., Zhang X., Ren S., Sun J., Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, IEEE Computer Society, 2016, pp. 770–778,.
[39]
Lin T.-Y., Dollár P., Girshick R.B., He K., Hariharan B., Belongie S.J., Feature pyramid networks for object detection, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, IEEE Computer Society, 2017, pp. 936–944,.
[40]
P. Nagarajan, G. Warnell, P. Stone, Deterministic Implementations for Reproducibility in Deep Reinforcement Learning, in: 2nd Reproducibility in Machine Learning Workshop At ICML 2018, Stockholm, Sweden, 2018, URL.
[41]
Gundersen O.E., Shamsaliei S., Isdahl R., Do machine learning platforms provide out-of-the-box reproducibility?, Future Gener. Comput. Syst. 126 (2022) 34–47,.
[42]
Su B., Zhang H., Li J., Zhou Z., Toward generalized few-shot open-set object detection, IEEE Trans. Image Process. 33 (2024) 1389–1402,.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Knowledge-Based Systems
Knowledge-Based Systems  Volume 303, Issue C
Nov 2024
408 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 18 November 2024

Author Tags

  1. Open-set object detection
  2. Pseudo-unknown
  3. EDL

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media