Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Twists of genus three curves over finite fields

Published: 01 September 2010 Publication History

Abstract

In this article we recall how to describe the twists of a curve over a finite field and we show how to compute the number of rational points on such a twist by methods of linear algebra. We illustrate this in the case of plane quartic curves with at least 16 automorphisms. In particular we treat the twists of the Dyck-Fermat and Klein quartics. Our methods show how in special cases non-Abelian cohomology can be explicitly computed. They also show how questions which appear difficult from a function field perspective can be resolved by using the theory of the Jacobian variety.

References

[1]
Some genus 3 curves with many points. In: Lecture Notes in Comput. Sci., vol. 2369. Springer-Verlag, Berlin. pp. 163-171.
[2]
Buhler, J., Schoen, C. and Top, J., Cycles, L-functions and triple products of elliptic curves. J. Reine Angew. Math. v492. 93-133.
[3]
Ciani, Edgardo, I vari tipi possibili di quartiche piane più volte omologiche armoniche. Rend. Circ. Mat. Palermo. v13. 347-373.
[4]
Ciani, E. and Wieleitner, H., Projektive Spezialisierungen von Kurven vierter und dritter Ordnung. In: Pascal, E. (Ed.), Repertorium der höheren Mathematik, II: Geometrie, erste Hälfte, Grundlagen und ebene Geometrie, Teubner Verlag, Leipzig/Berlin.
[5]
Dyck, Walther, Notiz über eine reguläre Riemann'sche Fläche vom Geschlechte drei und die zugehörige "Normalcurve" vierter Ordnung. Math. Ann. v17. 510-516.
[6]
Edge, W.L., A plane quartic curve with twelve undulations. Edinburgh Math. Notes. v35. 10-13.
[7]
Elkies, Noam D., The Klein quartic in number theory. In: Math. Sci. Res. Inst. Publ., vol. 35. Cambridge University Press, Cambridge. pp. 51-101.
[8]
Kantor, S., Theorie der endlichen Gruppen von eindeutigen Transformationen in der Ebene. 1895. Mayer & Müller, Berlin.
[9]
Klassen, Matthew J. and Schaefer, Edward F., Arithmetic and geometry of the curve y3+1=x4. Acta Arith. v74. 241-257.
[10]
Klein, Felix, Ueber die Transformation siebenter Ordnung der elliptischen Functionen. Math. Ann. v14. 428-471.
[11]
Milne, J.S., Abelian varieties. In: Arithmetic Geometry, Springer-Verlag, New York. pp. 103-150.
[12]
Milne, J.S., Jacobian varieties. In: Arithmetic Geometry, Springer-Verlag, New York. pp. 167-212.
[13]
Mumford, David, Geometric Invariant Theory. 1965. Ergeb. Math. Grenzgeb., 1965.Springer-Verlag, Berlin/New York.
[14]
Neumann, Peter M., A lemma that is not Burnside's. Math. Sci. v4. 133-141.
[15]
Rubin, Karl, Modularity of mod 5 representations. In: Modular Forms and Fermat's Last Theorem, Springer-Verlag, New York. pp. 463-474.
[16]
Serre, Jean-Pierre, Local Fields. 1979. Grad. Texts in Math., 1979.Springer-Verlag, New York.
[17]
Serre, Jean-Pierre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini. C. R. Acad. Sci. Paris Sér. I Math. v296. 397-402.
[18]
Serre, Jean-Pierre, Lectures on Curves over Finite Fields. 1985. Harvard University.
[19]
Serre, Jean-Pierre, Cohomologie Galoisienne. 1997. Lecture Notes in Math., 1997.cinquième éd. Springer-Verlag, Berlin.
[20]
Jaap Top, Hecke L-series related with algebraic cycles or with Siegel modular forms, PhD thesis, University of Utrecht, 1989.
[21]
A.M. Vermeulen, Weierstrass points of weight two on curves of genus three, PhD thesis, University of Amsterdam, 1983.
[22]
Wiman, A., Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene. Math. Ann. v48. 195-240.
[23]
Wright, E.M., Burnside's lemma: a historical note. J. Combin. Theory Ser. B. v30. 89-90.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Finite Fields and Their Applications
Finite Fields and Their Applications  Volume 16, Issue 5
September, 2010
85 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 September 2010

Author Tags

  1. 11G20
  2. 14G15
  3. 14H25
  4. 14H45
  5. 14H50
  6. 14K15
  7. Curve
  8. Dyck-Fermat quartic
  9. Jacobian
  10. Klein quartic
  11. Non-Abelian Galois cohomology
  12. Twist

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media