Learning high-dependence Bayesian network classifier with robust topology
References
Recommendations
Improving Tree augmented Naive Bayes for class probability estimation
Numerous algorithms have been proposed to improve Naive Bayes (NB) by weakening its conditional attribute independence assumption, among which Tree Augmented Naive Bayes (TAN) has demonstrated remarkable classification performance in terms of ...
Building Locally Discriminative Classifier Ensemble Through Classifier Fusion Among Nearest Neighbors
PCM 2016: 17th Pacific-Rim Conference on Advances in Multimedia Information Processing - Volume 9916Many studies on ensemble learning that combines multiple classifiers have shown that, it is an effective technique to improve accuracy and stability of a single classifier. In this paper, we propose a novel discriminative classifier fusion method, which ...
Learning Bayesian classifiers from positive and unlabeled examples
The positive unlabeled learning term refers to the binary classification problem in the absence of negative examples. When only positive and unlabeled instances are available, semi-supervised classification algorithms cannot be directly applied, and ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
Pergamon Press, Inc.
United States
Publication History
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Other Metrics
Citations
View Options
View options
Get Access
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in