Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A coarse-to-fine segmentation frame for polyp segmentation via deep and classification features

Published: 15 March 2023 Publication History

Abstract

Accurate polyp segmentation is of great significance for the diagnosis and treatment of colon cancer. Deep convolution network can extract the common high level features of the target. However, most network models ignore some individual features, so the sample prediction results in complex space are fuzzy and lack of regularity. In this paper, a coarse-to-fine segmentation frame for polyp segmentation via deep and classification features is proposed. Firstly, batch schatten-p norms maximization is introduced into a network model to strengthen the predict map. Then, an automatic two classification mechanism is constructed and the prediction map is classified into two categories: simple and complex samples. Since the CNN prediction maps of simple samples are close to binary images, the prediction maps are not processed. Finally, an active contour model segmentation algorithm for saliency detection of complex samples is proposed. Experiments on Kvasir-SEG, CVC-300, CVC-ClinincDB, CVC-ColonDB and ETIS-LaribPolypDB datasets using multiple models verify the effectiveness of the framework. Code is available at https://doi.org/10.24433/CO.7821162.v1.

Highlights

Batch schatten-p norms is introduced into the loss function.
An adaptive classification mechanism is constructed.
A coarse-to-fine segmentation framework is designed.
An ACM based on saliency information is proposed.

References

[1]
Ameling S., Wirth S., Paulus D., Lacey G., Vilarino F., Texture-based polyp detection in colonoscopy, in: Bildverarbeitung FÜR die medizin 2009, Springer, 2009, pp. 346–350.
[2]
Anthimopoulos M., Christodoulidis S., Ebner L., Christe A., Mougiakakou S., Lung pattern classification for interstitial lung diseases using a deep convolutional neural network, IEEE Transactions on Medical Imaging 35 (5) (2016) 1207–1216.
[3]
Arnold M., Sierra M.S., Laversanne M., Soerjomataram I., Jemal A., Bray F., Global patterns and trends in colorectal cancer incidence and mortality, Gut 66 (4) (2017) 683–691.
[4]
Asplund J., Kauppila J.H., Mattsson F., Lagergren J., Survival trends in gastric adenocarcinoma: a population-based study in Sweden, Annals of Surgical Oncology 25 (9) (2018) 2693–2702.
[5]
Bernal J., Sánchez F.J., Fernández-Esparrach G., Gil D., Rodríguez C., Vilariño F., WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians, Computerized Medical Imaging and Graphics 43 (2015) 99–111.
[6]
Bernal J., Sánchez J., Vilarino F., Towards automatic polyp detection with a polyp appearance model, Pattern Recognition 45 (9) (2012) 3166–3182.
[7]
Bresson X., Esedoḡlu S., Vandergheynst P., Thiran J.-P., Osher S., Fast global minimization of the active contour/snake model, Journal of Mathematical Imaging and Vision 28 (2) (2007) 151–167.
[8]
Bresson X., Esedoḡlu S., Vandergheynst P., Thiran J.-P., Osher S., Fast global minimization of the active contour/snake model, Journal of Mathematical Imaging and Vision 28 (2) (2007) 151–167.
[9]
Chang H., Luo L., Yang J., Yang M., Schatten p-norm based principal component analysis, Neurocomputing 207 (2016) 754–762.
[10]
Chen, H., Qi, X., Yu, L., & Heng, P.-A. (2016). DCAN: deep contour-aware networks for accurate gland segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2487–2496).
[11]
Chen, X., Williams, B. M., Vallabhaneni, S. R., Czanner, G., Williams, R., & Zheng, Y. (2019). Learning active contour models for medical image segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11632–11640).
[12]
Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., & Tian, Q. (2020). Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 3941–3950).
[13]
Dong B., Wang W., Fan D.-P., Li J., Fu H., Shao L., Polyp-pvt: Polyp segmentation with pyramid vision transformers, 2021, arXiv preprint arXiv:2108.06932.
[14]
Fan D.-P., Ji G.-P., Zhou T., Chen G., Fu H., Shen J., et al., Pranet: Parallel reverse attention network for polyp segmentation, in: International conference on medical image computing and computer-assisted intervention, Springer, 2020, pp. 263–273.
[15]
Hatamizadeh A., Hoogi A., Sengupta D., Lu W., Wilcox B., Rubin D., et al., Deep active lesion segmentation, in: International workshop on machine learning in medical imaging, Springer, 2019, pp. 98–105.
[16]
Hatamizadeh A., Sengupta D., Terzopoulos D., End-to-end deep convolutional active contours for image segmentation, 2019, arXiv preprint arXiv:1909.13359.
[17]
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).
[18]
Huang Q., Huang Y., Luo Y., Yuan F., Li X., Segmentation of breast ultrasound image with semantic classification of superpixels, Medical Image Analysis 61 (2020).
[19]
Huang Q., Luo H., Yang C., Li J., Deng Q., Liu P., et al., Anatomical prior based vertebra modelling for reappearance of human spines, Neurocomputing (2022).
[20]
Huang Q., Miao Z., Zhou S., Chang C., Li X., Dense prediction and local fusion of superpixels: A framework for breast anatomy segmentation in ultrasound image with scarce data, IEEE Transactions on Instrumentation and Measurement 70 (2021) 1–8.
[21]
Issa I.A., Noureddine M., Colorectal cancer screening: An updated review of the available options, World Journal of Gastroenterology 23 (28) (2017) 5086.
[22]
Iwahori Y., Shinohara T., Hattori A., Woodham R.J., Fukui S., Bhuyan M.K., et al., Automatic polyp detection in endoscope images using a hessian filter, in: MVA, 2013, pp. 21–24.
[23]
Jha D., Riegler M.A., Johansen D., Halvorsen P., Johansen H.D., Doubleu-net: A deep convolutional neural network for medical image segmentation, in: 2020 IEEE 33rd international symposium on computer-based medical systems, IEEE, 2020, pp. 558–564.
[24]
Jha D., Smedsrud P.H., Riegler M.A., Halvorsen P., Lange T.d., Johansen D., et al., Kvasir-seg: A segmented polyp dataset, in: International conference on multimedia modeling, Springer, 2020, pp. 451–462.
[25]
Jha D., Smedsrud P.H., Riegler M.A., Johansen D., De Lange T., Halvorsen P., et al., Resunet++: An advanced architecture for medical image segmentation, in: 2019 IEEE international symposium on multimedia, IEEE, 2019, pp. 225–2255.
[26]
Ji G.-P., Xiao G., Chou Y.-C., Fan D.-P., Zhao K., Chen G., et al., Video polyp segmentation: A deep learning perspective, 2022, arXiv preprint arXiv:2203.14291.
[27]
Karkanis S.A., Iakovidis D.K., Maroulis D.E., Karras D.A., Tzivras M., Computer-aided tumor detection in endoscopic video using color wavelet features, IEEE Transactions on Information Technology in Biomedicine 7 (3) (2003) 141–152.
[28]
Leufkens A., Van Oijen M., Vleggaar F., Siersema P., Factors influencing the miss rate of polyps in a back-to-back colonoscopy study, Endoscopy 44 (05) (2012) 470–475.
[29]
Liu L., Huang W., Chen D.-R., Exact minimum rank approximation via Schatten p-norm minimization, Journal of Computational and Applied Mathematics 267 (2014) 218–227.
[30]
Liu G., Jiang Y., Chang B., Liu D., Superpixel-based active contour model via a local similarity factor and saliency, Measurement 188 (2022).
[31]
Lou A., Guan S., Ko H., Loew M.H., CaraNet: context axial reverse attention network for segmentation of small medical objects, in: Medical imaging 2022: image processing, Vol. 12032, SPIE, 2022, pp. 81–92.
[32]
Luo Y., Huang Q., Li X., Segmentation information with attention integration for classification of breast tumor in ultrasound image, Pattern Recognition 124 (2022).
[33]
Mahmud T., Paul B., Fattah S.A., PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images, Computers in Biology and Medicine 128 (2021).
[34]
Marcos, D., Tuia, D., Kellenberger, B., Zhang, L., Bai, M., Liao, R., et al. (2018). Learning deep structured active contours end-to-end. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8877–8885).
[35]
Mori Y., Kudo S.-e., Detecting colorectal polyps via machine learning, Nature Biomedical Engineering 2 (10) (2018) 713–714.
[36]
Nanni L., Ghidoni S., Brahnam S., Handcrafted vs. non-handcrafted features for computer vision classification, Pattern Recognition 71 (2017) 158–172.
[37]
Nie, F., Huang, H., & Ding, C. (2012). Low-rank matrix recovery via efficient schatten p-norm minimization. In Twenty-sixth AAAI conference on artificial intelligence.
[38]
Ongie G., Willett R., Nowak R.D., Balzano L., Algebraic variety models for high-rank matrix completion, in: International conference on machine learning, PMLR, 2017, pp. 2691–2700.
[39]
Ronneberger O., Fischer P., Brox T., U-net: Convolutional networks for biomedical image segmentation, in: International conference on medical image computing and computer-assisted intervention, Springer, 2015, pp. 234–241.
[40]
Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., et al., Imagenet large scale visual recognition challenge, International Journal of Computer Vision 115 (3) (2015) 211–252.
[41]
Sang D.V., Chung T.Q., Lan P.N., Hang D.V., Van Long D., Thuy N.T., Ag-curesnest: A novel method for colon polyp segmentation, 2021, arXiv preprint arXiv:2105.00402.
[42]
Shen, Z., Liu, Z., Li, J., Jiang, Y.-G., Chen, Y., & Xue, X. (2017). Dsod: Learning deeply supervised object detectors from scratch. In Proceedings of the IEEE international conference on computer vision (pp. 1919–1927).
[43]
Shin H.-C., Roth H.R., Gao M., Lu L., Xu Z., Nogues I., et al., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning, IEEE Transactions on Medical Imaging 35 (5) (2016) 1285–1298.
[44]
Silva J., Histace A., Romain O., Dray X., Granado B., Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer, International Journal of Computer Assisted Radiology and Surgery 9 (2) (2014) 283–293.
[45]
Tajbakhsh N., Gurudu S.R., Liang J., Automated polyp detection in colonoscopy videos using shape and context information, IEEE Transactions on Medical Imaging 35 (2) (2015) 630–644.
[46]
Tajbakhsh N., Shin J.Y., Gurudu S.R., Hurst R.T., Kendall C.B., Gotway M.B., et al., Convolutional neural networks for medical image analysis: Full training or fine tuning?, IEEE Transactions on Medical Imaging 35 (5) (2016) 1299–1312.
[47]
Tuba E., Tuba M., Jovanovic R., An algorithm for automated segmentation for bleeding detection in endoscopic images, in: 2017 international joint conference on neural networks, IEEE, 2017, pp. 4579–4586.
[48]
Yao J., Miller M., Franaszek M., Summers R.M., Colonic polyp segmentation in CT colonography-based on fuzzy clustering and deformable models, IEEE Transactions on Medical Imaging 23 (11) (2004) 1344–1352.
[49]
Yin Z., Liang K., Ma Z., Guo J., Duplex contextual relation network for polyp segmentation, in: 2022 IEEE 19th international symposium on biomedical imaging, IEEE, 2022, pp. 1–5.
[50]
Yu, J., Jiang, Y., Wang, Z., Cao, Z., & Huang, T. (2016). Unitbox: An advanced object detection network. In Proceedings of the 24th ACM international conference on multimedia (pp. 516–520).
[51]
Zhang R., Li G., Li Z., Cui S., Qian D., Yu Y., Adaptive context selection for polyp segmentation, in: International conference on medical image computing and computer-assisted intervention, Springer, 2020, pp. 253–262.
[52]
Zhao X., Zhang L., Lu H., Automatic polyp segmentation via multi-scale subtraction network, in: International conference on medical image computing and computer-assisted intervention, Springer, 2021, pp. 120–130.
[53]
Zhou Z., Siddiquee M.M.R., Tajbakhsh N., Liang J., Unet++: Redesigning skip connections to exploit multiscale features in image segmentation, IEEE Transactions on Medical Imaging 39 (6) (2019) 1856–1867.

Index Terms

  1. A coarse-to-fine segmentation frame for polyp segmentation via deep and classification features
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Expert Systems with Applications: An International Journal
          Expert Systems with Applications: An International Journal  Volume 214, Issue C
          Mar 2023
          1471 pages

          Publisher

          Pergamon Press, Inc.

          United States

          Publication History

          Published: 15 March 2023

          Author Tags

          1. Polyp segmentation
          2. Deep convolution network
          3. Batch schatten-p norms maximization
          4. Saliency detection
          5. Active contour model

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 22 Dec 2024

          Other Metrics

          Citations

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media