Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A channel selection method to find the role of the amygdala in emotion recognition avoiding conflict learning in EEG signals

Published: 01 February 2024 Publication History

Abstract

Emotion recognition using electroencephalogram signals has been widely studied in the last decade, achieving artificial intelligence models that accurately classify primitive or primary emotions. However, most of these models focus on signal processing methods to better recognize multiclass targets, ignoring efficient denoising methods to reduce artifacts in input samples. Therefore, this study proposes two-dimension reduction algorithms derived from machine learning models based on electroencephalogram channel selection and conflict learning. The last two approaches exploit the electroencephalogram signals from the SEED-V dataset as input data. Next, a wavelet noise-estimate frequency decomposition and a 1-D Local Binary Pattern (LBP) are applied to achieve a histogram per signal. After applying a feature extraction method, the targets per sample are adapted to yield the most relevant electroencephalogram channels and obtain a highly competitive machine-learning model that uses only the FCZ and CP4 electrodes. Additionally, relevant findings based on conflict learning yield that samples with “Happy” and “Disgust” targets had numerous artifacts compared with the other studied emotions (“Fear”, “Sad”, and “Neutral) but achieved superior performance than the channel selection method. The proposed framework reached accuracy rates per dimension reduction near 90% accuracy and between 87% and 92.8% using the F1-score metric. Hence, the classification results are highly competitive with state-of-the-art close-related methods.

References

[1]
Al-Qazzaz N.K., Sabir M.K., Ali S.H.B.M., Ahmad S.A., Grammer K., Electroencephalogram profiles for emotion identification over the brain regions using spectral, entropy and temporal biomarkers, Sensors 20 (1) (2019) 59,.
[2]
Al-Shargie F., Tariq U., Alex M., Mir H., Al-Nashash H., Emotion recognition based on fusion of local cortical activations and dynamic functional networks connectivity: An EEG study, IEEE Access 7 (2019) 143550–143562,.
[3]
Alazrai R., Homoud R., Alwanni H., Daoud M., EEG-based emotion recognition using quadratic time-frequency distribution, Sensors 18 (8) (2018) 2739,.
[4]
Albert J., López-Martín S., Carretié L., Emotional context modulates response inhibition: Neural and behavioral data, NeuroImage 49 (1) (2010) 914–921,.
[5]
Asghar M.A., Khan M.J., Rizwan M., Shorfuzzaman M., Mehmood R.M., AI inspired EEG-based spatial feature selection method using multivariate empirical mode decomposition for emotion classification, Multimedia Syst. 28 (4) (2021) 1275–1288,.
[6]
Bechara A., Damasio A.R., The somatic marker hypothesis: A neural theory of economic decision, Games Econom. Behav. 52 (2) (2005) 336–372,.
[7]
Berboth S., Morawetz C., Amygdala-prefrontal connectivity during emotion regulation: A meta-analysis of psychophysiological interactions, Neuropsychologia 153 (2021),.
[8]
Celeghin A., Diano M., Bagnis A., Viola M., Tamietto M., Basic emotions in human neuroscience: Neuroimaging and beyond, Front. Psychol. 8 (2017),.
[9]
Chen H., Zhang H., Liu C., Chai Y., Li X., An outlier detection-based method for artifact removal of few-channel EEGs, J. Neural Eng. 19 (5) (2022),.
[10]
Damasio A.R., The somatic marker hypothesis and the possible functions of the prefrontal cortex, Philos. Trans. R. Soc. London. Ser. B: Biol. Sci. 351 (1346) (1996) 1413–1420,.
[11]
Ding C., Peng H., Minimum redundancy feature selection from microarray gene expression data, J. Bioinform. Comput. Biol. 03 (02) (2005) 185–205,.
[12]
Dixon S.L., Koehler R.T., The hidden component of size in two-dimensional fragment descriptors: side effects on sampling in bioactive libraries, J. Med. Chem. 42 (15) (1999) 2887–2900,.
[13]
Dogan A., Akay M., Barua P.D., Baygin M., Dogan S., Tuncer T., Dogru A.H., Acharya U.R., PrimePatNet87: Prime pattern and tunable q-factor wavelet transform techniques for automated accurate EEG emotion recognition, Comput. Biol. Med. 138 (2021),.
[14]
Dogan A., Barua P.D., Baygin M., Tuncer T., Dogan S., Yaman O., Dogru A.H., Acharya R.U., Automated accurate emotion classification using clefia pattern-based features with EEG signals, Int. J. Healthc. Manag. (2022) 1–14,.
[15]
Ekman P., An argument for basic emotions, Cogn. Emot. 6 (3–4) (1992) 169–200,.
[16]
Farashi S., Khosrowabadi R., EEG based emotion recognition using minimum spanning tree, Phys. Eng. Sci. Med. 43 (3) (2020) 985–996,.
[17]
Guex R., Méndez-Bértolo C., Moratti S., Strange B.A., Spinelli L., Murray R.J., Sander D., Seeck M., Vuilleumier P., Domínguez-Borràs J., Temporal dynamics of amygdala response to emotion- and action-relevance, Sci. Rep. 10 (1) (2020),.
[18]
Gupta V., Chopda M.D., Pachori R.B., Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals, IEEE Sens. J. 19 (6) (2019) 2266–2274,.
[19]
Homan R.W., Herman J., Purdy P., Cerebral location of international 10–20 system electrode placement, Electroencephalogr. Clin. Neurophysiol. 66 (4) (1987) 376–382,.
[20]
Houssein E.H., Hammad A., Ali A.A., Human emotion recognition from EEG-based brain–computer interface using machine learning: A comprehensive review, Neural Comput. Appl. 34 (15) (2022) 12527–12557,.
[21]
Javidan M., Yazdchi M., Baharlouei Z., Mahnam A., Feature and channel selection for designing a regression-based continuous-variable emotion recognition system with two EEG channels, Biomed. Signal Process. Control 70 (2021),.
[22]
Karnati M., Seal A., Bhattacharjee D., Yazidi A., Krejcar O., Understanding deep learning techniques for recognition of human emotions using facial expressions: A comprehensive survey, IEEE Trans. Instrum. Meas. 72 (2023) 1–31,.
[23]
Karnati M., Seal A., Yazidi A., Krejcar O., FLEPNet: Feature level ensemble parallel network for facial expression recognition, IEEE Trans. Affect. Comput. 13 (4) (2022) 2058–2070,.
[24]
Kaya Y., Uyar M., Tekin R., Yıldırım S., 1D-local binary pattern based feature extraction for classification of epileptic EEG signals, Appl. Math. Comput. 243 (2014) 209–219,.
[25]
Koelstra S., Muhl C., Soleymani M., Lee J.-S., Yazdani A., Ebrahimi T., Pun T., Nijholt A., Patras I., DEAP: A database for emotion analysis  using physiological signals, IEEE Trans. Affect. Comput. 3 (1) (2012) 18–31,.
[26]
Kong W., Song X., Sun J., Emotion recognition based on sparse representation of phase synchronization features, Multimedia Tools Appl. 80 (14) (2021) 21203–21217,.
[27]
Ledesma S., Ibarra-Manzano M.-A., Almanza-Ojeda D.-L., Avina-Cervantes J.G., Cabal-Yepez E., On removing conflicts for machine learning, Expert Syst. Appl. 206 (2022),.
[28]
Ledesma S., Ibarra-Manzano M.-A., Cabal-Yepez E., Almanza-Ojeda D.-L., Avina-Cervantes J.-G., Analysis of data sets with learning conflicts for machine learning, IEEE Access 6 (2018) 45062–45070,.
[29]
Li J.W., Barma S., Mak P.U., Chen F., Li C., Li M.T., Vai M.I., Pun S.H., Single-channel selection for EEG-based emotion recognition using brain rhythm sequencing, IEEE J. Biomed. Health Inform. 26 (6) (2022) 2493–2503,.
[30]
Li G., Chen N., Jin J., Semi-supervised EEG emotion recognition model based on enhanced graph fusion and GCN, J. Neural Eng. 19 (2) (2022),.
[31]
Li P., Liu H., Si Y., Li C., Li F., Zhu X., Huang X., Zeng Y., Yao D., Zhang Y., Xu P., EEG based emotion recognition by combining functional connectivity network and local activations, IEEE Trans. Biomed. Eng. 66 (10) (2019) 2869–2881,.
[32]
Liu W., Qiu J.-L., Zheng W.-L., Lu B.-L., Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition, IEEE Trans. Cogn. Dev. Syst. 14 (2) (2022) 715–729,.
[33]
Liu W., Zheng W.-L., Li Z., Wu S.-Y., Gan L., Lu B.-L., Identifying similarities and differences in emotion recognition with EEG and eye movements among Chinese, German, and French people, J. Neural Eng. 19 (2) (2022),.
[34]
Maithri M., Raghavendra U., Gudigar A., Samanth J., Barua P.D., Murugappan M., Chakole Y., Acharya U.R., Automated emotion recognition: Current trends and future perspectives, Comput. Methods Programs Biomed. 215 (2022),.
[35]
Matsumoto D., Ekman P., American-Japanese cultural differences in intensity ratings of facial expressions of emotion, Motiv. Emot. 13 (2) (1989) 143–157,.
[36]
McRae K., Misra S., Prasad A.K., Pereira S.C., Gross J.J., Bottom-up and top-down emotion generation: implications for emotion regulation, Soc. Cogn. Affect. Neurosci. 7 (3) (2011) 253–262,.
[37]
Mohan K., Seal A., Krejcar O., Yazidi A., Facial expression recognition using local gravitational force descriptor-based deep convolution neural networks, IEEE Trans. Instrum. Meas. 70 (2021) 1–12,.
[38]
Mohan K., Seal A., Krejcar O., Yazidi A., FER-net: facial expression recognition using deep neural net, Neural Comput. Appl. 33 (15) (2021) 9125–9136,.
[39]
Nyklíček I., Vingerhoets A., Zeelenberg M., Emotion Regulation: Conceptual and Clinical Issues, in: Behavioral Science, Springer US, 2007, URL https://books.google.com.mx/books?id=Jf68sWr0uHMC.
[40]
Pan C., Shi C., Mu H., Li J., Gao X., EEG-based emotion recognition using logistic regression with Gaussian kernel and Laplacian prior and investigation of critical frequency bands, Appl. Sci. 10 (5) (2020) 1619,.
[41]
Pessoa L., A network model of the emotional brain, Trends in Cognitive Sciences 21 (5) (2017) 357–371,.
[42]
Phelps E.A., LeDoux J.E., Contributions of the amygdala to emotion processing: From animal models to human behavior, Neuron 48 (2) (2005) 175–187,.
[43]
Pourtois G., Spinelli L., Seeck M., Vuilleumier P., Temporal precedence of emotion over attention modulations in the lateral amygdala: Intracranial ERP evidence from a patient with temporal lobe epilepsy, Cogn., Affect., Behav. Neurosci. 10 (1) (2010) 83–93,.
[44]
Rogers D.J., Tanimoto T.T., A computer program for classifying plants, Science 132 (3434) (1960) 1115–1118,.
[45]
Sakalle A., Tomar P., Bhardwaj H., Acharya D., Bhardwaj A., A LSTM based deep learning network for recognizing emotions using wireless brainwave driven system, Expert Syst. Appl. 173 (2021),.
[46]
Sander D., Grafman J., Zalla T., The human amygdala: An evolved system for relevance detection, Rev. Neurosci. 14 (4) (2003),.
[47]
Seal A., Reddy P.P.N., Chaithanya P., Meghana A., Jahnavi K., Krejcar O., Hudak R., An EEG database and its initial benchmark emotion classification performance, Comput. Math. Methods Med. 2020 (2020) 1–14,.
[48]
Silard A., Dasborough M.T., Beyond emotion valence and arousal: A new focus on the target of leader emotion expression within leader–member dyads, J. Organ. Behav. 42 (9) (2021) 1186–1201,.
[49]
Šimić G., Tkalčić M., Vukić V., Mulc D., Španić E., Šagud M., Olucha-Bordonau F.E., Vukšić M., Hof P.R., Understanding emotions: Origins and roles of the amygdala, Biomolecules 11 (6) (2021) 823,.
[50]
Song T., Zheng W., Song P., Cui Z., EEG emotion recognition using dynamical graph convolutional neural networks, IEEE Trans. Affect. Comput. 11 (3) (2020) 532–541,.
[51]
Sonkusare S., Qiong D., Zhao Y., Liu W., Yang R., Mandali A., Manssuer L., Zhang C., Cao C., Sun B., Zhan S., Voon V., Frequency dependent emotion differentiation and directional coupling in amygdala, orbitofrontal and medial prefrontal cortex network with intracranial recordings, Mol. Psychiatry (2022),.
[52]
Sterling P., Allostasis: A model of predictive regulation, Physiol. Behav. 106 (1) (2012) 5–15,.
[53]
Tavera-Vaca C.-A., Almanza-Ojeda D.-L., Ibarra-Manzano M.-A., Analysis of the efficiency of the census transform algorithm implemented on FPGA, Microprocess. Microsyst. 39 (7) (2015) 494–503,.
[54]
Topic A., Russo M., Stella M., Saric M., Emotion recognition using a reduced set of EEG channels based on holographic feature maps, Sensors 22 (9) (2022) 3248,.
[55]
Tuncer T., Dogan S., Baygin M., Acharya U.R., Tetromino pattern based accurate EEG emotion classification model, Artif. Intell. Med. 123 (2022),.
[56]
Ullah H., Uzair M., Mahmood A., Ullah M., Khan S.D., Cheikh F.A., Internal emotion classification using EEG signal with sparse discriminative ensemble, IEEE Access 7 (2019) 40144–40153,.
[57]
Wagh K.P., Vasanth K., Performance evaluation of multi-channel electroencephalogram signal (EEG) based time frequency analysis for human emotion recognition, Biomed. Signal Process. Control 78 (2022),.
[58]
Waxenbaum J.A., Reddy V., Varacallo M., Anatomy, autonomic nervous system, in: StatPearls, StatPearls Publishing, Treasure Island (FL), 2022.
[59]
Wu X., Zheng W.-L., Li Z., Lu B.-L., Investigating EEG-based functional connectivity patterns for multimodal emotion recognition, J. Neural Eng. 19 (1) (2022),.
[60]
Yang K., Tong L., Shu J., Zhuang N., Yan B., Zeng Y., High Gamma band EEG closely related to emotion: Evidence from functional network, Front. Hum. Neurosci. 14 (2020),.
[61]
Zheng W., Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis, IEEE Trans. Cogn. Dev. Syst. 9 (3) (2017) 281–290,.
[62]
Zheng X., Liu X., Zhang Y., Cui L., Yu X., A portable HCI system-oriented EEG feature extraction and channel selection for emotion recognition, Int. J. Intell. Syst. 36 (1) (2020) 152–176,.
[63]
Zheng W.-L., Lu B.-L., Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks, IEEE Trans. Auton. Ment. Dev. 7 (3) (2015) 162–175,.
[64]
Zheng X., Yu X., Yin Y., Li T., Yan X., Three-dimensional feature maps and convolutional neural network-based emotion recognition, Int. J. Intell. Syst. 36 (11) (2021) 6312–6336,.
[65]
Zheng W.-L., Zhu J.-Y., Lu B.-L., Identifying stable patterns over time for emotion recognition from EEG, IEEE Trans. Affect. Comput. 10 (3) (2019) 417–429,.
[66]
Zhu L., Ding W., Zhu J., Xu P., Liu Y., Yan M., Zhang J., Multisource wasserstein adaptation coding network for EEG emotion recognition, Biomed. Signal Process. Control 76 (2022),.
[67]
Zhuang N., Zeng Y., Tong L., Zhang C., Zhang H., Yan B., Emotion recognition from EEG signals using multidimensional information in EMD domain, BioMed. Res. Int. 2017 (2017) 1–9,.

Index Terms

  1. A channel selection method to find the role of the amygdala in emotion recognition avoiding conflict learning in EEG signals
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Engineering Applications of Artificial Intelligence
            Engineering Applications of Artificial Intelligence  Volume 126, Issue PC
            Nov 2023
            1571 pages

            Publisher

            Pergamon Press, Inc.

            United States

            Publication History

            Published: 01 February 2024

            Author Tags

            1. Emotion recognition
            2. Electroencephalogram
            3. Channel selection
            4. Conflict learning
            5. Local binary pattern

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 29 Nov 2024

            Other Metrics

            Citations

            View Options

            View options

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media