Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Edge integrity of nearest neighbor graphs and separator theorems

Published: 01 September 2019 Publication History

Abstract

We give upper bounds for the edge integrity and the vertex integrity of k-type nearest neighbor graphs in R d. For n the order of a graph, examples are constructed to show that the bounds are best possible in the parameters n and k. The results follow from decompositions that are shown for certain graphs that possess small edge or vertex separators. A vertex separator theorem for nearest neighbor graphs is known, and an edge separator theorem is shown. We also apply the decompositions to obtain upper bounds for the edge integrity of planar graphs, graphs of fixed genus, and trees.

References

[1]
Agarwal P.K., Pach J., Combinatorial Geometry, in: Wiley-Interscience Series in Discrete Math. and Optimization, John Wiley & Sons, Inc., New York, 1995.
[2]
Alon N., Seymour P., Thomas R., Planar separators, SIAM J. Discrete Math. 7 (1994) 184–193.
[3]
Bagga K.S., Beineke L.W., Lipman M.J., Pippert R.E., Edge-integrity: a survey, Discrete Math. 124 (1994) 3–12.
[4]
Bagga K.S., Beineke L.W., Lipman M.J., Pippert R.E., Sedlmeyer R.L., A good algorithm for the computation of the edge-integrity of trees, Congr. Numer. 67 (1988) 225–232.
[5]
Bagga K.S., Beineke L.W., Lipman M.J., Pippert R.E., Sedlmeyer R.L., Some bounds and an algorithm for the edge-integrity of trees, Ars Combin. 35 (1993) 225–238.
[6]
Barefoot C.A., Entriger R., Swart H., Integrity of trees and powers of cycles, in: Eighteenth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL 1987), in: Congr. Numer., vol. 58, 1987, pp. 103–114.
[7]
Barefoot C.A., Entringer R., Swart H., Vulnerability in graphs–a comparative survey, J. Combin. Math. Combin. Comput. 1 (1987) 12–22.
[8]
Benko D., Ernst C., Lanphier D., Asymptotic bounds on the integrity of graphs and separator theorems, SIAM J. Discrete Math. 23 (2009) 265–277.
[9]
Bollobás B., Leader I., Edge-isoperimetric inequalities in the grid, Combinatorica 11 (4) (1991) 299–314.
[10]
Brito M., Chávez E., Quiroz A., Yukich J., Connectivity of the mutual k-nearest neighbor graph in clustering and outlier detection, Statist. Probab. Lett. 35 (1997) 33–42.
[11]
Brownlee J., K-Nearest neighbors for machine learning, Mach. Learn. Algorithms (2016).
[12]
Chamizo F., Iwaniec H., On the sphere problem, Rev. Mat. Iberoam. 11 (2) (1995) 417–429.
[13]
Chávez E., Paredes R., Using the k nearest neighbor graph for proximity searching in metric spaces, in: String Processing and Information Retrieval, in: Lect. Notes in Comp. Sci., vol. 3772, Springer, Berlin, 2005, pp. 127–138.
[14]
Chen J., Fang H.R., Saad Y., Fast approximate k N N graph construction for high dimensional data via recursive Lanczos bisection, J. Mach. Learn. Res. 10 (2009) 1989–2012.
[15]
Chudnov A.M., On minimax signal generation and reception algorithms, Probl. Inform. Transm. 22 (4) (1986) 49–54.
[16]
Diks K., Djidjev H.N., Sýkora O., Vrťo I., Edge separators of planar and outerplanar graphs with applications, J. Algorithms 14 (1993) 258–279.
[17]
Djidjev H.N., A separator theorem for graphs of fixed genus, Serdica Math. J. 11 (1985) 319–329.
[18]
Dunkum M., Lanphier D., Vulnerability of nearest neighbor graphs, Discrete Appl. Math. 171 (2014) 42–52.
[19]
Federer H., Geometric Measure Theory, in: Classic Texts in Math., Springer-Verlag, Berlin Heidelberg, 1996.
[20]
Fränti P., Virmajoki O., Hautamäki V., Fast agglomerative clustering using a k-nearest neighbor graph, IEEE Trans. Pattern Anal. Mach. Intell. 28 (11) (2006) 1875–1881.
[21]
Goddard W., Swart H., Integrity in graphs: bounds and basics, J. Combin. Math. Combin. Comput. 7 (1990) 139–151.
[22]
González-Barrios J.M., Quiroz A.J., A clustering procedure based on the comparison between the k-nearest neighbor graph and the minimal spanning tree, Statist. Prob. Lett. 62 (1) (2003) 23–34.
[23]
Huxley M.N., Exponential sums and lattice points II, Proc. Lond. Math. Soc. 66 (1993) 279–301.
[24]
Kabatyanskil G.A., Levenshtein V.I., On bounds for packings on a sphere and in space, Probl. Inform. Transm. 14 (1) (1978) 1–17.
[25]
Lipton R.J., Tarjan R.E., A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979) 177–189.
[26]
Lipton R.J., Tarjan R.E., Applications of a planar separator theorem, SIAM J. Comput. 9 (1980) 615–627.
[27]
Miller G.L., Teng S.-H., Thurston W., Vavasis S.A., Separators for sphere-packings and nearest neighbor graphs, J. ACM 44 (1997) 1–29.
[28]
Miller G.L., Teng S.-H., Thurston W., Vavasis S.A., Geometric separators for finite-element meshes, SIAM J. Sci. Comput. 19 (2) (1998) 364–386.
[29]
Moazzami D., An algorithm for the computation of edge integrity, I ′ ( T ), Int. J. Contemp. Math. Sci. 6 (11) (2011) 507–516.
[30]
Simon H.D., Teng S.-H., How good is recursive bijection?, SIAM J. Sci. Comput. 18 (5) (1997) 1436–1445.
[31]
Smith W.D., Wormald N.C., Geometric separator theorems and applications, in: 39th Annual Symp. on Foundations of Comp. Sci., in: FOCS ’98, 1998, pp. 232–243.
[32]
Sýkora O., Vrťo I., Edge separators for graphs of bounded genus with applications, Theoret. Comput. Sci. 112 (2) (1993) 419–429.
[33]
Tang B., He H., ENN: Extended nearest neighbor method for pattern recognition [Research Frontier], IEEE Comput. Intell. Mag. 10 (3) (2015) 52–60.
[34]
Teng S.-H., Points, Spheres, and Separators, A Unified Geometric Approach to Graph Partitioning, (Ph.D. Thesis) School of Computer Science, Carnegie Mellon University, 1991.
[35]
Toussaint G.T., Geometric proximity graphs for improving nearest neighbor methods in instance-based learning and data mining, Int. J. Comput. Geom. Appl. 15 (2) (2005) 101–150.

Index Terms

  1. Edge integrity of nearest neighbor graphs and separator theorems
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Discrete Mathematics
        Discrete Mathematics  Volume 342, Issue 9
        Sep 2019
        304 pages

        Publisher

        Elsevier Science Publishers B. V.

        Netherlands

        Publication History

        Published: 01 September 2019

        Author Tags

        1. Edge integrity
        2. Integrity
        3. Nearest neighbor graph
        4. Separator

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 21 Dec 2024

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media