Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Time-aware structure matching for temporal knowledge graph alignment

Published: 18 July 2024 Publication History

Abstract

Entity alignment, aiming at identifying equivalent entity pairs across multiple knowledge graphs (KGs), serves as a vital step for knowledge fusion. As the majority of KGs undergo continuous evolution, existing solutions utilize graph neural networks (GNNs) to tackle entity alignment within temporal knowledge graphs (TKGs). However, this prevailing method often overlooks the consequential impact of relation embedding generation on entity embeddings through inherent structures. In this paper, we propose a novel model named Time-aware Structure Matching based on GNNs (TSM-GNN) that encompasses the learning of both topological and inherent structures. Our key innovation lies in a unique method for generating relation embeddings, which can enhance entity embeddings via inherent structure. Specifically, we utilize the translation property of knowledge graphs to obtain the entity embedding that is mapped into a time-aware vector space. Subsequently, we employ GNNs to learn global entity representation. To better capture the useful information from neighboring relations and entities, we introduce a time-aware attention mechanism that assigns different importance weights to different time-aware inherent structures. Experimental results on three real-world datasets demonstrate that TSM-GNN outperforms several state-of-the-art approaches for entity alignment between TKGs.

References

[1]
J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. Mendes, S. Hellmann, M. Morsey, P. VanKleef, S. Auer, C. Bizer, DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia, Semant Web 6 (2) (Jan. 2015) 167–195.
[2]
F. Mahdisoltani, J. Biega, F. Suchanek, Yago3: a knowledge base from multilingual wikipedias, Proc. CIDR (2014).
[3]
K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created graph database for structuring human knowledge, Proc. SIGMOD (2008) 1247–1250.
[4]
N. Khan, Z. Ma, A. Ullah, K. Polat, DCA-IoMT: knowledge graph embedding-enhanced deep collaborative alerts-recommendation against COVID19, IEEE Trans. Ind. Inf. 18 (12) (Dec. 2022),.
[5]
Y. Zhang, H. Dai, Z. Kozareva, A. Smola, L. Song, Variational reasoning for question answering with knowledge graph, Proc. AAAI (2018) 6069–6076.
[6]
B. Lin, H. Sun, B. Dhingra, M. Zaheer, X. Ren, W. Cohen, Differentiable open-ended commonsense reasoning, Proc. ACL (2021) 4611–4625.
[7]
C. Xu, Y. Chen, M. Nayyeri, J. Lehmann, Temporal knowledge graph completion using a linear temporal regularizer and multivector embeddings, Proc. NAACL (2021) 2569–2578.
[8]
Y. Yan, L. Liu, Y. Ban, B. Jing, H. Tong, Dynamic knowledge graph alignment, Proc. AAAI (2021) 4564–4572.
[9]
M. Chen, Y. Tian, M. Yang, C. Zaniolo, Multilingual knowledge graph embeddings for cross-lingual knowledge alignment, Proc. IJCAI (2017) 1511–1517.
[10]
Z. Sun, W. Hu, C. Li, Cross-lingual entity alignment via joint attribute preserving embedding, Proc. ISWC (2017) 628–644.
[11]
Z. Sun, W. Hu, Q. Zhang, Y. Qu, Bootstrapping entity alignment with knowledge graph embedding, Proc. IJCAI (2018) 4396–4402.
[12]
Z. Wang, Q. Lv, X. Lan, Y. Zhang, Crosslingual knowledge graph alignment via graph convolutional networks, Proc. EMNLP (2018) 349–357.
[13]
Y. Wu, X. Liu, Y. Feng, Z. Wang, D. Zhao, Jointly learning entity and relation representations for entity alignment, Proc. EMNLP (2019) 240–249.
[14]
C. Xu, F. Su, J. Lehmann, Time-aware graph neural networks for entity alignment between temporal knowledge graphs, Proc. EMNLP (2021) 8999–9010.
[15]
A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Translating embeddings for modeling multi-relational data, Proc. NeurIPS (2013) 2787–2795.
[16]
J. Zhang, Knowledge Graph Embedding by Translating on Hyperplanes, Proc. AAAI (2014).
[17]
Y.K. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning entity and relation embeddings for knowledge graph completion, Proc. AAAI (2015).
[18]
G.L. Ji, S.X. He, L.H. Xu, K. Liu, J. Zhao, Knowledge graph embedding via dynamic mapping matrix, Proc. ACL (2015).
[19]
T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, G. Bouchard, Complex embeddings for simple link prediction, Proc. ICML (2016) 2071–2080.
[20]
Z. Sun, Z. Deng, J. Nie, J. Tang, RotatE: knowledge graph embedding by relational rotation in complex space, Proc. ICLR (2019).
[21]
S. Zhang, Y. Tay, L. Yao, Q. Liu, Quaternion knowledge graph embeddings, Proc. NeurIPS (2019) 2731–2741.
[22]
M. Schlichtkrull, T. Kipf, P. Bloem, R. Berg, I. Titov, M. Welling, Modeling relational data with graph convolutional networks, Proc. ESWC (2018) 593–607.
[23]
Y. Liu, W. Hua, J. Qu, K. Xin, X. Zhou, Temporal knowledge completion with context-aware embeddings, World Wide Web 24 (Mar. 2021) 675–965.
[24]
A. Sadeghian, M. Armandpour, A. Colas, D. Wang, ChronoR: rotation based temporal knowledge graph embedding, Proc. AAAI (2021) 6471–6479.
[25]
W. Jin, C. Zhang, P. Szekely, X. Ren, Recurrent event network for reasoning over temporal knowledge graphs, Proc. ICLR (2019).
[26]
J. Wu, M. Cao, J. Cheung, W. Hamilton, TeMP: temporal message passing for temporal knowledge graph completion, Proc. EMNLP (2020) 5730–5746.
[27]
Y. He, P. Zhang, L. Liu, Q. Liang, W. Zhang, C. Zhang, H.I.P. Network, Historical information passing network for extrapolation reasoning on temporal knowledge graph, Proc. IJCAI (2021) 1915–1921.
[28]
Z. Han, J. Jiang, Y. Wang, Y. Ma, V. Tresp, The graph hawkes network for reasoning on temporal knowledge graphs, Proc. NeurIPS (2019).
[29]
H. Zhu, R. Xie, Z. Liu, M. Sun, Iterative entity alignment via joint knowledge embeddings, Proc. IJCAI (2017) 4258–4264.
[30]
Z. Huang, Z. Li, H. Jiang, T. Cao, H. Lu, B. Yin, K. Subbian, Y. Sun, W. Wang, Multilingual knowledge graph completion with self-supervised adaptive graph alignment, Proc. ACL (2022) 474–485.
[31]
R. Ye, X. Li, Y. Fang, H. Zang, M. Wang, A vectorized relational graph convolutional network for multi-relational network alignment, Proc. IJCAI (2019) 4135–4141.
[32]
Y. Zhu, H. Liu, Z. Wu, Y. Du, Relation-aware neighborhood matching model for entity alignment, Proc. AAAI (2021) 4749–4756.
[33]
X. Mao, W. Wang, H. Xu, M. Lan, Y. Wu, Mraea: an efficient and robust entity alignment approach for cross-lingual knowledge graph, Proc. WSDM (2020) 420–428.
[34]
X. Mao, W. Wang, H. Xu, Y. Wu, M. Lan, Relational reflection entity alignment, Proc. CIKM (2020) 1095–1104.
[35]
X. Liu, H. Hong, X. Wang, Z. Chen, E. Kharlamov, Y. Dong, J. Tang, SelfKG: self-supervised entity alignment in knowledge graphs, Proc. WWW (2022) 860–870.
[36]
F. Scarselli, M. Gori, A. Tsio, M. Hagenbuchner, G. Monfardini, The graph neural network model, IEEE Trans. Neural Networks 20 (1) (Jan. 2008) 61–80.
[37]
T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, Workshop Track Proceedings of the 1st International Conference on Learning Representations (2013).
[38]
K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification, Proc. ICCV (2015) 1026–1034.
[39]
K. Leetaru, P.A. Schrodt, Gdelt: global data on events, location, and tone, 1979–2012, Proc. ISA annual convention 2 (4) (2013).

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Data & Knowledge Engineering
Data & Knowledge Engineering  Volume 151, Issue C
May 2024
223 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 18 July 2024

Author Tags

  1. Distributed representations
  2. Knowledge acquisition
  3. Knowledge life cycles
  4. Knowledge maintenance

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media