Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Komodo Mlipir Algorithm

Published: 01 January 2022 Publication History

Abstract

This paper proposes Komodo Mlipir Algorithm (KMA) as a new metaheuristic optimizer. It is inspired by two phenomena: the behavior of Komodo dragons living in the East Nusa Tenggara, Indonesia, and the Javanese gait named mlipir. Adopted the foraging and reproduction of Komodo dragons, the population of a few Komodo individuals (candidate solutions) in KMA are split into three groups based on their qualities: big males, female, and small males. First, the high-quality big males do a novel movement called high-exploitation low-exploration to produce better solutions. Next, the middle-quality female generates a better solution by either mating the highest-quality big male (exploitation) or doing parthenogenesis (exploration). Finally, the low-quality small males diversify candidate solutions using a novel movement called mlipir (a Javanese term defined as a walk on the side of the road to reach a particular destination safely), which is implemented by following the big males in a part of their dimensions. A self-adaptation of the population is also proposed to control the exploitation–exploration balance. An examination using the well-documented twenty-three benchmark functions shows that KMA outperforms the recent metaheuristic algorithms. Besides, it provides high scalability to optimize thousand-dimensional functions. The source code of KMA is publicly available at: https://suyanto.staff.telkomuniversity.ac.id/komodo-mlipir-algorithm and https://www.mathworks.com/matlabcentral/fileexchange/102514-komodo-mlipir-algorithm.

Highlights

A Komodo Mlipir Algorithm (KMA) is proposed as a novel metaheuristic optimizer.
A new coordination is created by three groups of individuals with different strategies.
A mlipir movement is introduced as a low-exploitation high-exploration strategy.
KMA is stable and scalable for thousand-dimensional classic benchmark functions.

References

[1]
Holland J.H., Genetic algorithms, Sci. Am. 267 (1) (1992) 66–72,. URL https://www.scientificamerican.com/article/genetic-algorithms/.
[2]
Suyanto J.H., An Informed Genetic Algorithm for University Course and Student Timetabling Problems, 2010,.
[3]
Cheng J., Pan Z., Liang H., Gao Z., Gao J., Differential evolution algorithm with fitness and diversity ranking-based mutation operator, Swarm Evol. Comput. 61 (May 2020) (2021),. URL https://doi.org/10.1016/j.swevo.2020.100816.
[4]
Bourouis M.A., Zadjaoui A., Djedid A., Contribution of two artificial intelligence techniques in predicting the secondary compression index of fine-grained soils, Innov. Infrast. Solut. 5 (3) (2020),.
[5]
Yin X., Niu Z., He Z., Li Z., Lee D., An integrated computational intelligence technique based operating parameters optimization scheme for quality improvement oriented process-manufacturing system, Comput. Ind. Eng. 140 (2020),.
[6]
Mp V., Anand B., Microprocessors and Microsystems Particle swarm optimization technique for multilevel inverters in solar harvesting micro grid system, Microprocess. Microsyst. 79 (August) (2020),.
[7]
Palacios S., Chiriboga S., Montalvo W., PID-2DOF-ACO speed controller for DC motor on ARM platform [Controlador de velocidad PID-2DOF-ACO para motor DC sobre plataforma ARM], RISTI - Revista Iberica de Sistemas E Tecnologias de Informacao 2020 (E30) (2020) 217–228.
[8]
Hansen N., Müller S.D., Koumoutsakos P., Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), Genet. Evol. Comput. Ser. 11 (1) (2003) 1–18,.
[9]
Tanabe R., Fukunaga A., Success-history based parameter adaptation for Differential Evolution, 2013 IEEE Congress on Evolutionary Computation, 2013, pp. 71–78,.
[10]
Tanabe R., Fukunaga A.S., Improving the search performance of SHADE using linear population size reduction, in: IEEE Congress on Evolutionary Computation (CEC), 2014.
[11]
Awad N.H., Ali M.Z., Suganthan P.N., Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving CEC2017 benchmark problems, in: 2017 IEEE Congress on Evolutionary Computation (CEC), 2017, pp. 372–379,.
[12]
Yang X.-S., Firefly algorithm, stochastic test functions and design optimization, Int. J. Bio-Inspired Comput. 2 (2) (2010) 78–84,. URL https://www.inderscienceonline.com/doi/pdf/10.1504/IJBIC.2010.032124.
[13]
Kumar V., Kumar D., A systematic review on firefly algorithm: Past, present, and future, Arch. Comput. Methods Eng. (2020),. URL https://www.x-mol.com/paper/1311351373626052608.
[14]
Yang X.-S., Deb S., Cuckoo search via levy flights, 2010, arXiv:1003.1594.
[15]
Ma H., Li S., Zhang E., Lv Z., Hu J., Wei X., Cooperative autonomous driving oriented MEC-Aided 5G-V2X: Prototype system design, field tests and AI-based optimization tools, IEEE Access 8 (2020) 54288–54302,.
[16]
Yang X.-s., A new metaheuristic bat-inspired algorithm, in: Nature Inspired Coop- Erative Strategies for Optimization (NISCO), 2010, pp. 65–74. arXiv: arXiv:1004.4170v1, URL https://link.springer.com/chapter/10.1007/978-3-642-12538-6_6.
[17]
Fadhil A.A., Alsarraj R.G.H., Altaie A.M., Software cost estimation based on dolphin algorithm, IEEE Access 8 (2020) 75279–75287,.
[18]
Passino K.M., Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Syst. 22 (3) (2002) 52–67,. URL https://ieeexplore.ieee.org/abstract/document/1004010.
[19]
Gan X., B B.X., Improved Bacterial Foraging Optimization Algorithm with Comprehensive Swarm, Springer International Publishing, 2020, pp. 325–334,. URL https://doi.org/10.1007/978-3-030-53956-6_29.
[20]
Rashedi E., Nezamabadi-pour H., Saryazdi S., GSA: A gravitational search algorithm, Inform. Sci. 179 (13) (2009) 2232–2248,. URL http://www.sciencedirect.com/science/article/pii/S0020025509001200, Special Section on High Order Fuzzy Sets.
[21]
Mirjalili S., Gandomi A.H., Mirjalili S.Z., Saremi S., Faris H., Mirjalili S.M., Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw. 114 (2017) 163–191,. URL http://www.sciencedirect.com/science/article/pii/S0965997816307736.
[22]
Rao R., Savsani V., Vakharia D., Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems, Comput. Aided Des. 43 (3) (2011) 303–315,. URL http://www.sciencedirect.com/science/article/pii/S0010448510002484.
[23]
Mirjalili S., Mirjalili S.M., Lewis A., Grey wolf optimizer, Adv. Eng. Softw. 69 (2014) 46–61,.
[24]
Gupta S., Deep K., Enhanced leadership-inspired grey wolf optimizer for global optimization problems, Eng. Comput. 36 (4) (2020) 1777–1800,.
[25]
Mirjalili S., Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl. 27 (4) (2016) 1053–1073,. URL https://doi.org/10.1007/s00521-015-1920-1.
[26]
Hammouri A.I., Mafarja M., Al-Betar M.A., Awadallah M.A., Abu-Doush I., An improved Dragonfly Algorithm for feature selection, Knowl.-Based Syst. 203 (2020),. URL http://www.sciencedirect.com/science/article/pii/S0950705120303889.
[27]
Mirjalili S., Advances in engineering software the ant lion optimizer, Adv. Eng. Softw. 83 (2015) 80–98,. URL https://doi.org/10.1016/j.advengsoft.2015.01.010.
[28]
Assiri A.S., Hussien A.G., Amin M., Ant lion optimization: Variants, hybrids, and applications, IEEE Access 8 (2020) 77746–77764,. URL https://ieeexplore.ieee.org/abstract/document/9078091.
[29]
Mirjalili S., Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowl.-Based Syst. 89 (2015) 228–249,. URL https://www.sciencedirect.com/science/article/abs/pii/S0950705115002580.
[30]
Zhang R., Qiu Z., Optimizing hyper-parameters of neural networks with swarm intelligence: A novel framework for credit scoring, PLoS ONE 15 (6) (2020),.
[31]
Uymaz S.A., Tezel G., Yel E., Artificial algae algorithm (AAA) for nonlinear global optimization, Appl. Soft Comput. 31 (2015) 153–171,. URL https://www.sciencedirect.com/science/article/pii/S1568494615001465.
[32]
Korkmaz S., Kiran M.S., An artificial algae algorithm with stigmergic behavior for binary optimization, Appl. Soft Comput. 64 (2018) 627–640,. URL https://www.sciencedirect.com/science/article/pii/S1568494618300061.
[33]
Zhao W., Wang L., Zhang Z., A novel atom search optimization for dispersion coefficient estimation in groundwater, Future Gener. Comput. Syst. (2018),.
[34]
Rao R.V., Rao algorithms: Three metaphor-less simple algorithms for solving optimization problems, Int. J. Ind. Eng. Comput. 11 (1) (2020) 107–130,.
[35]
Suyanto S., Wibowo A.T., Faraby S.A., Saadah S., Rismala R., Evolutionary Rao algorithm, J. Comput. Sci. 53 (March) (2021),.
[36]
Faramarzi A., Heidarinejad M., Stephens B., Mirjalili S., Equilibrium optimizer: A novel optimization algorithm, Knowl.-Based Syst. 191 (2020),. URL https://www.sciencedirect.com/science/article/abs/pii/S0950705119305295?via%3Dihub.
[37]
Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi A.H., Marine Predators Algorithm: A nature-inspired metaheuristic, Expert Syst. Appl. 152 (2020),.
[38]
Elaziz M.A., Ewees A.A., Yousri D., Alwerfali H.S.N., Awad Q.A., Lu S., Al-Qaness M.A.A., An improved marine predators algorithm with fuzzy entropy for multi-level thresholding: Real world example of COVID-19 CT image segmentation, IEEE Access 8 (2020) 125306–125330,.
[39]
Li S., Chen H., Wang M., Heidari A.A., Mirjalili S., Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst. 111 (2020) 300–323,. URL https://www.sciencedirect.com/science/article/pii/S0167739X19320941.
[40]
Precup R.-E., David R.-C., Roman R.-C., Petriu E.M., Szedlak-Stinean A.-I., Slime mould algorithm-based tuning of cost-effective fuzzy controllers for servo systems, Int. J. Comput. Intell. Syst. 14 (1) (2021) 1042–1052,.
[41]
Brest J., Maučec M.S., The 100-digit challenge : Algorithm jDE100, in: 2019 IEEE Congress on Evolutionary Computation (CEC), 2019,.
[42]
Sallam K.M., Elsayed S.M., Chakrabortty R.K., Ryan M.J., Improved multi-operator differential evolution algorithm for solving unconstrained problems, in: 2020 IEEE Congress on Evolutionary Computation (CEC), 2020, pp. 1–8,.
[43]
Wolpert D., Macready W., No free lunch theorems for optimization, IEEE Trans. Evol. Comput. 1 (1) (1997) 67–82,. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031118203&doi=10.1109%2f4235.585893&partnerID=40&md5=fac8c56be911367d556066800e863066, cited By 5993.
[44]
of Encyclopaedia T.E., Komodo dragon, in: Britannica, 2020, URL https://www.britannica.com/animal/Komodo-dragon.
[45]
Sartore J., Komodo dragon, in: National Geographic, 2021, URL https://www.nationalgeographic.com/animals/reptiles/k/komodo-dragon/.
[46]
Lind A.L., Lai Y.Y., Mostovoy Y., Holloway A.K., Iannucci A., Mak A.C., Fondi M., Orlandini V., Eckalbar W.L., Milan M., et al., Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards, Nat. Ecol. Evol. 3 (8) (2019) 1241–1252.
[47]
Ciofi C., The Komodo dragon, Sci. Am. 280 (3) (1999) 84–91.
[48]
Watts P.C., Buley K.R., Sanderson S., Boardman W., Ciofi C., Gibson R., Parthenogenesis in Komodo dragons, Nature 444 (7122) (2006) 1021–1022.
[49]
Opara K., Arabas J., Comparison of mutation strategies in Differential evolution – a probabilistic perspective, Swarm Evol. Comput. 39 (2018) 53–69,. URL https://www.sciencedirect.com/science/article/pii/S2210650217303310.
[50]
Stephens C., Waelbroeck H., Schemata evolution and building blocks, Genet. Evol. Comput. Ser. 7 (2) (1999) 109–124,.

Cited By

View all

Index Terms

  1. Komodo Mlipir Algorithm
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Applied Soft Computing
    Applied Soft Computing  Volume 114, Issue C
    Jan 2022
    894 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 01 January 2022

    Author Tags

    1. Komodo mlipir algorithm
    2. Metaheuristic optimization
    3. Self-adaptation of population
    4. Exploitation–exploration balance
    5. Scalable to thousand dimensions

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Komodo Mlipir Algorithm for Optimizing Hyperparameters of a Convolutional Neural NetworkProceedings of the 2024 10th International Conference on Computing and Artificial Intelligence10.1145/3669754.3669809(356-364)Online publication date: 26-Apr-2024
    • (2024)The Hiking Optimization AlgorithmKnowledge-Based Systems10.1016/j.knosys.2024.111880296:COnline publication date: 19-Jul-2024
    • (2024)Intelligent optimizationEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.106959126:PDOnline publication date: 27-Feb-2024
    • (2023)Boosted sooty tern optimization algorithm for global optimization and feature selectionExpert Systems with Applications: An International Journal10.1016/j.eswa.2022.119015213:PBOnline publication date: 1-Mar-2023
    • (2023)Liver Cancer AlgorithmComputers in Biology and Medicine10.1016/j.compbiomed.2023.107389165:COnline publication date: 1-Oct-2023
    • (2023)Optimized deep learning architecture for brain tumor classification using improved Hunger Games Search AlgorithmComputers in Biology and Medicine10.1016/j.compbiomed.2023.106966160:COnline publication date: 1-Jun-2023
    • (2023)A modified reptile search algorithm for global optimization and image segmentationComputers in Biology and Medicine10.1016/j.compbiomed.2022.106404152:COnline publication date: 1-Jan-2023
    • (2023)Evaluation of new sparrow search algorithms with sequential fusion of improvement strategiesComputers and Industrial Engineering10.1016/j.cie.2023.109425182:COnline publication date: 1-Aug-2023
    • (2023)A hybrid biogeography-based optimization algorithm to solve high-dimensional optimization problems and real-world engineering problemsApplied Soft Computing10.1016/j.asoc.2023.110514144:COnline publication date: 1-Sep-2023
    • (2023)Discrete komodo algorithm for traveling salesman problem▪Applied Soft Computing10.1016/j.asoc.2023.110219139:COnline publication date: 1-May-2023

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media