Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Matrix-oriented FEM formulation for reaction-diffusion PDEs on a large class of 2D domains

Published: 09 July 2024 Publication History

Abstract

For the spatial discretization of elliptic and parabolic partial differential equations (PDEs), we provide a Matrix-Oriented formulation of the classical Finite Element Method, called MO-FEM, of arbitrary order k ∈ N. On a quite general class of 2D domains, namely separable domains, and even on special surfaces, the discrete problem is then reformulated as a multiterm Sylvester matrix equation where the additional terms account for the geometric contribution of the domain shape. By considering the IMEX Euler method for the PDE time discretization, we obtain a sequence of these equations. To solve each multiterm Sylvester equation, we apply the matrix-oriented form of the Preconditioned Conjugate Gradient (MO-PCG) method with a matrix-oriented preconditioner that captures the spectral properties of the Sylvester operator. Solving the Poisson problem and the heat equation on some separable domains by MO-FEM-PCG, we show a gain in computational time and memory occupation wrt the classical vector PCG with same preconditioning or wrt a LU based direct method. As an application, we show the advantages of the MO-FEM-PCG to approximate Turing patterns on some separable domains and cylindrical surfaces for a morphochemical reaction-diffusion PDE system for battery modelling.

References

[1]
P. Antolin, A. Buffa, F. Calabró, M. Martinelli, G. Sangalli, Efficient matrix computation for tensor-product isogeometric analysis: the use of sum factorization, Comput. Methods Appl. Mech. Eng. 285 (2015) 817–828,.
[2]
R. Barreira, C.M. Elliott, A. Madzvamuse, The surface finite element method for pattern formation on evolving biological surfaces, J. Math. Biol. 63 (2011) 1095–1119,.
[3]
R.H. Bartels, G.W. Stewart, Solution of the matrix equation AX + XB = C, Commun. ACM 15 (1972) 820–826,.
[4]
D. Becherer, M. Schweizer, et al., Classical solutions to reaction–diffusion systems for hedging problems with interacting Itô and point processes, Ann. Appl. Probab. 15 (2005) 1111–1144,.
[5]
B. Bozzini, D. Lacitignola, I. Sgura, Spatio-temporal organization in alloy electrodeposition: a morphochemical mathematical model and its experimental validation, J. Solid State Electrochem. 17 (2013) 467–479,.
[6]
B. Bozzini, C. Mele, A. Veneziano, N. Sodini, G. Lanzafame, A. Taurino, L. Mancini, Morphological evolution of Zn-sponge electrodes monitored by in situ X-ray computed microtomography, ACS Appl. Energy Mater. 3 (2020) 4931–4940,.
[7]
S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, vol. 3, Springer, 2008,.
[8]
M.A.J. Chaplain, M. Ganesh, I.G. Graham, Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth, J. Math. Biol. 42 (2001) 387–423,.
[9]
M.C. D'Autilia, I. Sgura, V. Simoncini, Matrix-oriented discretization methods for reaction–diffusion PDEs: comparisons and applications, Comput. Math. Appl. 79 (2020) 2067–2085,.
[10]
S. Duczek, H. Gravenkamp, Critical assessment of different mass lumping schemes for higher order serendipity finite elements, Comput. Methods Appl. Mech. Eng. 350 (2019) 836–897,.
[11]
G. Dziuk, C.M. Elliott, Finite element methods for surface PDEs, Acta Numer. 22 (2013) 289–396,.
[12]
C. Eilks, C.M. Elliott, Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method, J. Comput. Phys. 227 (2008) 9727–9741,.
[13]
C.M. Elliott, B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements, J. Comput. Phys. 229 (2010) 6585–6612,.
[14]
M. Frittelli, I. Sgura, Virtual Element Method for the Laplace-Beltrami equation on surfaces, ESAIM: Math. Model. Numer. Anal. 52 (2018) 965–993,.
[15]
M. Frittelli, A. Madzvamuse, I. Sgura, C. Venkataraman, Lumped finite elements for reaction-cross-diffusion systems on stationary surfaces, Comput. Math. Appl. 74 (2017) 3008–3023,.
[16]
M. Frittelli, A. Madzvamuse, I. Sgura, C. Venkataraman, Numerical preservation of velocity induced invariant regions for reaction–diffusion systems on evolving surfaces, J. Sci. Comput. 77 (2018) 971–1000,.
[17]
M. Frittelli, A. Madzvamuse, I. Sgura, C. Venkataraman, Preserving invariance properties of reaction–diffusion systems on stationary surfaces, IMA J. Numer. Anal. 39 (2019) 235–270,.
[18]
M. Frittelli, A. Madzvamuse, I. Sgura, Bulk-surface virtual element method for systems of PDEs in two-space dimensions, Numer. Math. 147 (2021) 305–348,.
[19]
M. Frittelli, A. Madzvamuse, I. Sgura, The bulk-surface virtual element method for reaction-diffusion PDEs: analysis and applications, Commun. Comput. Phys. 33 (2023) 733–763,.
[20]
M. Frittelli, A. Madzvamuse, I. Sgura, Virtual element method for elliptic bulk-surface PDEs in three space dimensions, Numer. Methods Partial Differ. Equ. (2023) 1–27,.
[21]
G. Golub, S. Nash, C. Van Loan, A Hessenberg-Schur method for the problem AX + XB = C, IEEE Trans. Autom. Control 24 (1979) 909–913,.
[22]
Y. Hao, V. Simoncini, Matrix equation solving of PDEs in polygonal domains using conformal mappings, J. Numer. Math. 29 (3) (2021) 221–244,.
[23]
J. Henning, D. Palitta, V. Simoncini, K. Urban, An ultraweak space-time variational formulation for the wave equation: analysis and efficient numerical solution, ESAIM: Math. Model. Numer. Anal. 56 (2022) 1173–1198,.
[24]
T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Corporation, 2012.
[25]
C. Jordan, K. Jordán, Calculus of Finite Differences, vol. 33, American Mathematical Soc., 1965.
[26]
E.J. Kansa, Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics – II solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl. 19 (1990) 147–161,.
[27]
P. Knupp, S. Steinberg, Fundamentals of Grid Generation, CRC Press, 2020,.
[28]
D. Lacitignola, B. Bozzini, I. Sgura, Spatio-temporal organization in a morphochemical electrodeposition model: analysis and numerical simulation of spiral waves, Acta Appl. Math. 132 (2014) 377–389,.
[29]
D. Lacitignola, B. Bozzini, I. Sgura, Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay, Eur. J. Appl. Math. 26 (2015) 143–173,.
[30]
D. Lacitignola, B. Bozzini, M. Frittelli, I. Sgura, Turing pattern formation on the sphere for a morphochemical reaction-diffusion model for electrodeposition, Commun. Nonlinear Sci. Numer. Simul. 48 (2017) 484–508,.
[31]
D. Lacitignola, I. Sgura, B. Bozzini, T. Dobrovolska, I. Krastev, Spiral waves on the sphere for an alloy electrodeposition model, Commun. Nonlinear Sci. Numer. Simul. 79 (2019),.
[32]
D. Lacitignola, M. Frittelli, V. Cusimano, A. De Gaetano, Pattern formation on a growing oblate spheroid. An application to adult sea urchin development, J. Comput. Dyn. 9 (2022) 185–206,.
[33]
A. Mantzaflaris, B. Jüttler, B.N. Khoromskij, U. Langer, Low rank tensor methods in Galerkin-based isogeometric analysis, Comput. Methods Appl. Mech. Eng. 316 (2017) 1062–1085,.
[34]
Y.-Y. Nie, V. Thomée, A lumped mass finite-element method with quadrature for a non-linear parabolic problem, IMA J. Numer. Anal. 5 (1985) 371–396,.
[35]
D. Palitta, Matrix equation techniques for certain evolutionary partial differential equations, J. Sci. Comput. 87 (2021) 99,.
[36]
D. Palitta, V. Simoncini, Matrix-equation-based strategies for convection–diffusion equations, BIT Numer. Math. 56 (2016) 751–776,.
[37]
R.G. Plaza, F. Sanchez-Garduno, P. Padilla, R.A. Barrio, P.K. Maini, The effect of growth and curvature on pattern formation, J. Dyn. Differ. Equ. 16 (2004) 1093–1121,.
[38]
C.E. Powell, D. Silvester, V. Simoncini, An efficient reduced basis solver for stochastic Galerkin matrix equations, SIAM J. Sci. Comput. 39 (2017) A141–A163,.
[39]
A. Quarteroni, Numerical Models for Differential Problems, vol. 16, Springer, 2017,.
[40]
Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003,.
[41]
G. Sangalli, M. Tani, Isogeometric preconditioners based on fast solvers for the Sylvester equation, SIAM J. Sci. Comput. 38 (2016) A3644–A3671,.
[42]
I. Sgura, A.S. Lawless, B. Bozzini, Parameter estimation for a morphochemical reaction–diffusion model of electrochemical pattern formation, Inverse Probl. Sci. Eng. 27 (2019) 618–647,.
[43]
S.D. Shank, V. Simoncini, D.B. Szyld, Efficient low-rank solution of generalized Lyapunov equations, Numer. Math. 134 (2016) 327–342,.
[44]
V. Simoncini, Computational methods for linear matrix equations, SIAM Rev. 58 (2016) 377–441,.
[45]
A.M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B, Biol. Sci. 237 (1952) 37–72,.
[46]
V.K. Vanag, Waves and patterns in reaction–diffusion systems. Belousov–Zhabotinsky reaction in water-in-oil microemulsions, Phys. Usp. 47 (2004) 923,.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Applied Numerical Mathematics
Applied Numerical Mathematics  Volume 200, Issue C
Jun 2024
466 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 09 July 2024

Author Tags

  1. Finite elements
  2. Sylvester equations
  3. IMEX methods
  4. Reaction-diffusion PDEs
  5. Turing patterns
  6. Battery modelling

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media