Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Nonlinear least squares and Sobolev gradients

Published: 01 March 2013 Publication History

Abstract

Least squares methods are effective for solving systems of partial differential equations. In the case of nonlinear systems the equations are usually linearized by a Newton iteration or successive substitution method, and then treated as a linear least squares problem. We show that it is often advantageous to form a sum of squared residuals first, and then compute a zero of the gradient with a Newton-like method. We present an effective method, based on Sobolev gradients, for treating the nonlinear least squares problem directly. The method is based on trust-region subproblems defined by a Sobolev norm and solved by a preconditioned conjugate gradient method with an effective preconditioner that arises naturally from the Sobolev space setting. The trust-region method is shown to be equivalent to a Levenberg-Marquardt method which blends a Newton or Gauss-Newton iteration with a gradient descent iteration, but uses a Sobolev gradient in place of the Euclidean gradient. We also provide an introduction to the Sobolev gradient method and discuss its relationship to operator preconditioning with equivalent operators.

References

[1]
Babuška, I., Error bounds for finite element methods. Numer. Math. v16. 322-333.
[2]
C. Beasley, Finite element solution to nonlinear partial differential equations, Ph.D. thesis, University of North Texas, Denton, TX, 1981.
[3]
Bochev, P.B. and Gunzburger, M.D., Least-Squares Finite Element Methods. 2009. Applied Mathematical Sciences, 2009.Springer.
[4]
Cai, Z., Lazarov, R., Manteuffel, T. and McCormick, S., First-order system least squares for second-order partial differential equations. SIAM J. Numer. Anal. v31. 1785-1799.
[5]
Cai, Z., Manteuffel, T. and McCormick, S., First-order system least squares for second-order partial differential equations. SIAM J. Numer. Anal. v34. 425-454.
[6]
Calder, J., Mansouri, A. and Yezzi, A., Image sharpening via Sobolev gradient flows. SIAM J. Imaging Sci. v3. 981-1014.
[7]
Carey, G.F. and Jiang, B.N., Element-by-element linear and nonlinear solution schemes. Commun. Appl. Numer. Methods. v2. 145-153.
[8]
Carey, G.F. and Jiang, B.N., Least-squares finite element method and preconditioned conjugate gradient solution. Int. J. Numer. Methods Eng. v24. 1283-1296.
[9]
Carey, G.F. and Jiang, B.N., Nonlinear preconditioned conjugate gradient and least-squares finite elements. Comput. Methods Appl. Mech. Eng. v62. 145-154.
[10]
Carey, G.F. and Richardson Jr., W.B., A note on least squares methods. Commun. Numer. Methods Eng. v22. 83-92.
[11]
R. Clough, J. Tocher, Finite element stiffness matrices for analysis of plates in bending, in: Proc. of Conference on Matrix Methods in Structural Analysis, Wright-Patterson AFB, 1965.
[12]
Danaila, I. and Kazemi, P., A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation. SIAM J. Sci. Comput. v32. 2447-2467.
[13]
Faber, V., Manteuffel, T.A. and Parter, S.V., On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential operators. Adv. Appl. Math. v11. 109-163.
[14]
Faragó, I. and Karátson, J., Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators: Theory and Applications. 2002. Advances in Computation, 2002.NOVA Science Publishers, Inc., New York.
[15]
Goldstein, C.I., Manteuffel, T.A. and Parter, S.V., Preconditioning and boundary conditions without H2 estimates: L2 condition numbers and the distribution of singular values. SIAM J. Numer. Anal. v30. 343-376.
[16]
Jiang, B., The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics. 1998. Springer-Verlag, Berlin.
[17]
Joubert, W.D., Manteuffel, T.A., Parter, S.V. and Wong, S.P., Preconditioning second-order elliptic operators: experiment and theory. SIAM J. Sci. Stat. Comput. v13. 259-288.
[18]
Karátson, J. and Faragó, I., Variable preconditioning via quasi-Newton methods for nonlinear problems in Hilbert space. SIAM J. Numer. Anal. v41. 1242-1262.
[19]
Karátson, J. and Faragó, I., Preconditioning operators and Sobolev gradients for nonlinear elliptic problems. Comput. Math. Appl. v50. 1077-1092.
[20]
Karátson, J. and Neuberger, J.W., Newton's method in the context of gradients. Electron. J. Differential Equations. v2007. 1-13.
[21]
Kazemi, P., Using projections in a direct minimization scheme for a wide class of energy functionals. Comm. Appl. Nonlinear Anal. v16. 69
[22]
Kazemi, P. and Renka, R.J., A Levenberg-Marquardt method based on Sobolev gradients. Nonlinear Anal.
[23]
P. Kazemi, R.J. Renka, Minimization of the Ginzburg-Landau energy functional by a Sobolev gradient trust-region method, submitted for publication.
[24]
Kufner, A., Weighted Sobolev Spaces. 1985. John Wiley & Sons, New York, NY.
[25]
Mahavier, W.T., A numerical method utilizing weighted Sobolev descent to solve singular differential equations. Nonlinear World. v4. 435-455.
[26]
Manteuffel, T.A. and Parter, S.V., Preconditioning and boundary conditions. SIAM J. Numer. Anal. v27. 656-694.
[27]
Manteuffel, T.A. and Otto, J.S., Optimal equivalent preconditionings. SIAM J. Numer. Anal. v30. 790-812.
[28]
Neuberger, J.W., An iterative method for approximating solutions to nonlinear partial differential equations. In: Lakshmikantham, V. (Ed.), Applied Nonlinear Analysis, Academic Press, New York. pp. 287-297.
[29]
Neuberger, J.W., Sobolev Gradients and Differential Equations. 2010. Springer Lecture Notes in Mathematics, 2010.second ed. Springer-Verlag.
[30]
Nocedal, J. and Wright, S.J., Numerical Optimization. 1999. Springer Series in Operations Research, 1999.Springer-Verlag, New York.
[31]
Raydan, M., The Barzilai and Borwein gradient descent method for the large scale unconstrained minimization problem. SIAM J. Optim. v7. 26-33.
[32]
Raza, N., Sial, S. and Siddiqi, S., Approximating time evolution related to Ginzburg-Landau functionals via Sobolev gradient methods in a finite-element setting. J. Comput. Phys. v229. 1621-1625.
[33]
R.J. Renka, A Sobolev gradient method for treating the steady-state incompressible Navier-Stokes equations, Cent. Eur. J. Math., in press.
[34]
Renka, R.J. and Neuberger, J.W., Minimal surfaces and Sobolev gradients. SIAM J. Sci. Comput. v16. 1412-1427.
[35]
Renka, R.J. and Neuberger, J.W., Sobolev gradients and the Ginzburg-Landau equations. SIAM J. Sci. Comput. v20. 582-590.
[36]
Richardson Jr., W.B., High-order Sobolev preconditioning. Nonlinear Anal. v63. 1779-1787.
[37]
Richardson Jr., W.B., Sobolev preconditioning for image-processing PDEs. Commun. Numer. Methods Eng. v24. 493-504.
[38]
Richardson, W.B., Pardhanani, A.L., Carey, G.F. and Ardelea, A., Numerical effects in the simulation of Ginzburg-Landau models for superconductivity. Int. J. Numer. Methods Eng. v59. 1251-1272.
[39]
Sial, S., A Sobolev gradient algorithm for minimum energy states of s-wave superconductors-finite element setting. Supercond. Sci. Technol. v18. 675
[40]
S. Sial, J.W. Neuberger, T. Lookman, A. Saxena, Energy minimization using Sobolev gradients-finite-element setting, in: A.D.R. Choudary, F.M. Bhatti (Eds.), Proc. World Conference on 21st Century Mathematics, Lahore, Pakistan, 2005.
[41]
Steihaug, T., The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal. v20. 626-637.
[42]
Troesch, B.A., A simple approach to a sensitive two-point boundary value problem. J. Comput. Phys. v21. 279-290.

Cited By

View all
  • (2014)A trust region method for constructing triangle-mesh approximations of parametric minimal surfacesApplied Numerical Mathematics10.1016/j.apnum.2013.10.00676(93-100)Online publication date: 1-Feb-2014
  • (2013)Optical tomography reconstruction algorithm with the finite element methodJournal of Computational Physics10.1016/j.jcp.2013.04.043251(461-479)Online publication date: 1-Oct-2013

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Applied Numerical Mathematics
Applied Numerical Mathematics  Volume 65, Issue
March, 2013
119 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 March 2013

Author Tags

  1. Gauss-Newton
  2. Least squares
  3. Levenberg-Marquardt
  4. Operator preconditioning
  5. Sobolev gradient
  6. Trust region

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2014)A trust region method for constructing triangle-mesh approximations of parametric minimal surfacesApplied Numerical Mathematics10.1016/j.apnum.2013.10.00676(93-100)Online publication date: 1-Feb-2014
  • (2013)Optical tomography reconstruction algorithm with the finite element methodJournal of Computational Physics10.1016/j.jcp.2013.04.043251(461-479)Online publication date: 1-Oct-2013

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media