Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Numerical solution of high-order VolterraFredholm integro-differential equations by using Legendre collocation method

Published: 01 July 2018 Publication History

Abstract

The main purpose of this paper is to use the Legendre collocation spectral method for solving the high-order linear VolterraFredholm integro-differential equations under the mixed conditions. Avoiding integration of both sides of the equation, we expressed mixed conditions as equivalent integral equations, by adding the neutral term to the equation. Error analysis for approximate solution and approximate derivatives up to order k of the solution is obtained in both L2 norm and L norm. To illustrate the accuracy of the spectral method, some numerical examples are presented.

References

[1]
G. Franceschini, A. Abubakar, T.M. Habashy, A. Massa, A comparative assessment among iterative linear solvers dealing with electromagnetic integral equations in 3d inhomogeneous anisotropic media, J. Electromag. Waves Appl., 21 (2007) 899-914.
[2]
S. Hatamzadeh-Varmazyar, M. Naser-Moghadasi, E. Babolian, Z. Masouri, Numerical approach to survey the problem of electromagnetic scattering from resistive strips based on using a set of orthogonal basis functions, Progr. Electromagn. Res., 81 (2008) 393-412.
[3]
S. Hatamzadeh-Varmazyar, M. Naser-Moghadasi, Z. Masouri, A moment method simulation of electromagnetic scattering from conducting bodies, Progr. Electromagn. Res., 81 (2008) 99-119.
[4]
S. Hatamzadeh-Varmazyar, M. Naser-Moghadasi, E. Babolian, Z. Masouri, Calculating the radar cross section of the resistive targets using the haar wavelets, Progr. Electromagn. Res., 83 (2008) 55-80.
[5]
S. Hatamzadeh-Varmazyar, M. Naser-Moghadasi, New numerical method for determining the scattered electromagnetic fields from thin wires, Progr. Electromagn. Res. B, 3 (2008) 207-218.
[6]
S. Hatamzadeh-Varmazyar, M. Naser-Moghadasi, An integral equation modeling of electromagnetic scattering from the surfaces of arbitrary resistance distribution, Progr. Electromagn. Res. B, 3 (2008) 157-172.
[7]
K.F.A. Hussein, Fast computational algorithm for EFIE applied to arbitrarily-shaped conducting surfaces, Progr. Electromagn. Res., 68 (2007) 339-357.
[8]
G.X. Jiang, H.B. Zhu, W. Cao, Implicit solution of modified form of time-domain electric field integral equation, J. Electromagn. Waves Appl., 21 (2007) 697-707.
[9]
M.S. Tong, A stable integral equation solver for electromagnetic scattering by large scatterers with concave surface, Progr. Electromagn. Res., 74 (2007) 113-130.
[10]
C. Wu, G.X. Jiang, Stabilization procedure for the timedomain integral equation, J. Electromagn. Waves Appl., 21 (2007) 1507-1512.
[11]
C. Rama, V. Ekaterina, Integro-differential equations for option prices in exponential Levy models, Finan. Stochast., 9 (2005) 299-325.
[12]
K. Maleknejad, Y. Mahmoudi, Numerical solution of linear Fredholm integral equation by using hybrid Taylor and block-pulsefunctions, Appl. Math. Comput., 149 (2004) 799-806.
[13]
M.T. Rashed, Numerical solution of functional differential integral and integro-differential equations, Appl. Numer. Math., 156 (2004) 485-492.
[14]
Y. Ren, B. Zhang, H. Qiao, A simple Taylor-series expansion method for a class of second kind integral equations, J. Comput. Appl. Math., 110 (1999) 15-24.
[15]
W. Wang, An algorithm for solving the higher-order nonlinear VolterraFredholm integro-differential equation with mechanization, Appl. Math. Comput., 172 (2006) 1-23.
[16]
W. Wang, C. Lin, A new algorithm for integral of trigonometric functions with mechanization, Appl. Math. Comput., 164 (2005) 71-82.
[17]
R. Ansari, K. Hosseini, A. Darvizeh, B. Daneshian, A sixth-order compact finite difference method for non-classical vibration analysis of nanobeams including surface stress effects, Appl. Math. Comput., 219 (2013) 4977-4991.
[18]
R. Ansari, R. Gholami, K. Hosseini, S. Sahmani, A sixth-order compact finite difference method for vibrational analysis of nanobeams embedded in an elastic medium based on nonlocal beam theory, Math. Comput. Model., 54 (2011) 2577-2586.
[19]
K. Hosseini, B. Daneshian, N. Amanifard, R. Ansari, Homotopy analysis method for a fin with temperature dependent internal heat, Int. J. Nonlinear Sci., 14 (2012) 201-210.
[20]
Yalinbas, Salih: Taylor polynomial solutions of nonlinear VolterraFredholm integral equations, Appl. Math. Comput., 127 (2002) 195-206.
[21]
S. Yalinbas, M. Sezer, The approximate solution of high-order linear VolterraFredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput., 112 (2000) 291-308.
[22]
S. Shahmorad, Numerical solution of the general form linear FredholmVolterra integro-differential equations by the tau method with an error estimation, Appl. Math. Comput., 167 (2005) 1418-1429.
[23]
N.l. Aysbegu, Akyu,nz-dasbc.og.lu: A chebyshev polynomial approach for linear FredholmVolterra integro-differential equations in the most general form, Appl. Math. Comput., 181 (2006) 103-112.
[24]
E. Babolian, Z. Masouri, S. Hatamzadeh-Varmazyar, New direct method to solve non-linear VolterraFredholm integral and integro-differential equations using operational matrix with block pulse functions, Progr. Electromag. Res. B, 8 (2008) 59-76.
[25]
J. Biazar, M. Eslami, Exact solutions for non-linear VolterraFredholm integro-differential equations by hes homotopy perturbation method, Int. J. Nonlinear Sci., 9 (2010) 285-289.
[26]
Y. Wei, Y. Chen, Legendre spectral collocation method for neutral and high-order Volterra integro-differential equation, Appl. Numer. Math., 81 (2014) 15-29.
[27]
C. Canuto, A. Quarteroni, M.Y. Hussaini, T.A. Zang, Spectral Methods Fundamentals in Single Domains, Springer-Verlag, 2006.
[28]
C.K. Qu, R. Wong, Szegos conjecture on Lebesgue constants for Legendre series, Pacific J. Math., 135 (1988) 157-188.
[29]
B. Asady, M.T. Kajani, Direct method for solving integro differential equations using hybrid fourier and block-pulse functions, Int. J. Comput. Math., 82 (2005) 889-895.
[30]
K. Nurcan, S. Mehmet, Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients, J. Frankl. Institute., 345 (2008) 839-850.
[31]
M. Turkyilmazoglu, An effective approach for numerical solutions of high-order Fredholm integro-differential equations, Appl. Math. Comput., 227 (2014) 384-398.
[32]
S. Yuzbasi, N. Sahin, A. Yildirim, A collocation approach for solving high-order Linear Fredholmvolterra integro-differential equations, Math. Comput. Modell., 55 (2012) 547-563.
[33]
S. Yalcinbas, M. Sezer, H.H. Sorkun, Legendre polynomial solutions of high-order linear Fredholm integro-differential equations, Appl. Math. Comput., 210 (2009) 334-349.
[34]
A.H. Bhrawy, E. Tohidi, F. Soleymani, A new bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals, Appl. Math. Comput., 219 (2012) 482-497.
[35]
X. Shanga, D. Hanb, Application of the variational iteration method for solving nth-order integro-differential equations, J. Comput Appl. Math., 234 (2010) 1442-1447.
[36]
K. Maleknejad, Y. Mahmoudi, Taylor polynomial solution of high-order nonlinear VolterraFredholm integro-differential equations, Appl. Math Comput., 145 (2003) 641-653.

Cited By

View all
  • (2024)Stability inequalities and numerical solution for neutral Volterra delay integro-differential equationJournal of Computational and Applied Mathematics10.1016/j.cam.2023.115343436:COnline publication date: 15-Jan-2024
  • (2021)Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equationsEngineering with Computers10.1007/s00366-019-00912-z37:3(1791-1806)Online publication date: 1-Jul-2021
  1. Numerical solution of high-order VolterraFredholm integro-differential equations by using Legendre collocation method

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Applied Mathematics and Computation
      Applied Mathematics and Computation  Volume 328, Issue C
      July 2018
      289 pages

      Publisher

      Elsevier Science Inc.

      United States

      Publication History

      Published: 01 July 2018

      Author Tags

      1. 34K06
      2. 34K28
      3. 45J05
      4. 65R20
      5. Convergence analysis
      6. Guass quadrature formula
      7. Legendre-spectral method
      8. Neutral and high-order VolterraFredholm integro-differential equation

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 22 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Stability inequalities and numerical solution for neutral Volterra delay integro-differential equationJournal of Computational and Applied Mathematics10.1016/j.cam.2023.115343436:COnline publication date: 15-Jan-2024
      • (2021)Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equationsEngineering with Computers10.1007/s00366-019-00912-z37:3(1791-1806)Online publication date: 1-Jul-2021

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media