Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Adding value to Linked Open Data using a multidimensional model approach based on the RDF Data Cube vocabulary

Published: 01 February 2020 Publication History

Highlights

A novel framework to enhance the publication and enrichment of Government data by means of multidimensional models and LOD.
A methodology to evaluate a dataset based on the RDF Data Cube vocabulary including the evaluation of the data quality.
The dataset exploitation using dashboards that allow non-expert users to interact with data generated.
A public SPARQL endpoint has been enabled in order to facilitate the access and reuse the dataset for expert users.
The evaluation of the framework by means of a case study.

Abstract

Most organisations using Open Data currently focus on data processing and analysis. However, although Open Data may be available online, these data are generally of poor quality, thus discouraging others from contributing to and reusing them. This paper describes an approach to publish statistical data from public repositories by using Semantic Web standards published by the W3C, such as RDF and SPARQL, in order to facilitate the analysis of multidimensional models. We have defined a framework based on the entire lifecycle of data publication including a novel step of Linked Open Data assessment and the use of external repositories as knowledge base for data enrichment. As a result, users are able to interact with the data generated according to the RDF Data Cube vocabulary, which makes it possible for general users to avoid the complexity of SPARQL when analysing data. The use case was applied to the Barcelona Open Data platform and revealed the benefits of the application of our approach, such as helping in the decision-making process.

References

[1]
Miniwatts Marketing Group, World Internet Users and 2018 Population Stats, 2018, (https://www.internetworldstats.com/stats.htm). [Online; accessed 4-April-2018].
[2]
C.K. Emani, N. Cullot, C. Nicolle, Understandable big data: a survey, Comput. Sci. Rev. 17 (2015) 70–81,.
[3]
J. Marden, C. Li-Madeo, N. Whysel, J. Edelstein, Linked open data for cultural heritage: evolution of an information technology, in: M.J. Albers, K. Gossett (Eds.), Proceedings of the 31st ACM international conference on Design of communication, Greenville, NC, USA, September 30, - October 1, 2013, ACM, 2013, pp. 107–112,.
[4]
Tim Berners-Lee, Linked Data, 2006, (https://www.w3.org/DesignIssues/LinkedData.html). [Online; accessed 5-April-2018].
[5]
RDF Working Group, Resource Description Framework (RDF), 2014, (http://www.w3.org/RDF).[Online; accessed 15-November-2018].
[6]
S. Scheider, A. Degbelo, R. Lemmens, C. van Elzakker, P. Zimmerhof, N. Kostic, J. Jones, G. Banhatti, Exploratory querying of SPARQL endpoints in space and time, Semant. Web 8 (1) (2017) 65–86,.
[7]
Madrid City Council, Portal de datos abiertos del Ayuntamiento de Madrid, 2018, (https://datos.madrid.es/). [Online; accessed 5-April-2018].
[8]
London City Council, London Datastore, 2018, (https://data.london.gov.uk/). [Online; accessed 5-April-2018].
[9]
Barcelone City Council, Open Data BCN, 2018, (http://opendata-ajuntament.barcelona.cat/en/). [Online; accessed 5-April-2018].
[10]
Paris City Council, Open Data Paris, 2018, (https://opendata.paris.fr). [Online; accessed 5-April-2018].
[11]
New York City Council, NYC Open Data, 2018, (https://opendata.cityofnewyork.us/). [Online; accessed 5-April-2018].
[12]
G.J.P. Link, K. Lumbard, K. Conboy, M. Feldman, J. Feller, J. George, M. Germonprez, S.P. Goggins, D. Jeske, G. Kiely, K. Schuster, M. Willis, Contemporary issues of open data in information systems research: considerations and recommendations, CAIS 41 (2017) 25.
[13]
E. Ruijer, S. Grimmelikhuijsen, M.J. Hogan, S. Enzerink, A. Ojo, A. Meijer, Connecting societal issues, users and data. scenario-based design of open data platforms, Gov. Inf. Q. 34 (3) (2017) 470–480,.
[14]
F. Benitez-Paez, A. Degbelo, S. Trilles, J. Huerta, Roadblocks hindering the reuse of open geodata in colombia and spain: a data user’s perspective, ISPRS Int. J. Geo-Inf. 7 (1) (2018) 6,.
[15]
S. Bogdanović-Dinić, N. Veljković, L. Stoimenov, How Open Are Public Government Data? An Assessment of Seven Open Data Portals, Springer New York, New York, NY, pp. 25–44. 10.1007/978-1-4614-9982-4_3.
[16]
C. Muller, L. Chapman, S. Johnston, C. Kidd, S. Illingworth, G. Foody, A. Overeem, R. Leigh, Crowdsourcing for climate and atmospheric sciences: current status and future potential, Int. J. Climatol. 35 (11) (2015) 3185–3203,.
[17]
Open Data Barometer, Global report, 2018, (https://opendatabarometer.org/4thedition/report/). [Online; accessed 5-April-2018].
[18]
S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z.G. Ives, Dbpedia: a nucleus for a web of open data, in: K. Aberer, K. Choi, N.F. Noy, D. Allemang, K. Lee, L.J.B. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber, P. Cudré-Mauroux (Eds.), The Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11–15, 2007., in: Lecture Notes in Computer Science, 4825, Springer, 2007, pp. 722–735,.
[19]
T.P. Tanon, D. Vrandecic, S. Schaffert, T. Steiner, L. Pintscher, From freebase to wikidata: the great migration, in: J. Bourdeau, J. Hendler, R. Nkambou, I. Horrocks, B.Y. Zhao (Eds.), Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11, - 15, 2016, ACM, 2016, pp. 1419–1428,.
[20]
T. Rebele, F.M. Suchanek, J. Hoffart, J. Biega, E. Kuzey, G. Weikum, YAGO: a multilingual knowledge base from wikipedia, wordnet, and geonames, in: P.T. Groth, E. Simperl, A.J.G. Gray, M. Sabou, M. Krötzsch, F. Lécué, F. Flöck, Y. Gil (Eds.), The Semantic Web - ISWC 2016 - 15th International Semantic Web Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part II, in: Lecture Notes in Computer Science, 9982, 2016, pp. 177–185,.
[21]
The World Bank, Starting an Open Data Initiative, 2013, (http://opendatatoolkit.worldbank.org/en/starting.html). [Online; accessed 5-April-2018].
[22]
European Data Portal, Open Data in a nutshell, 2015, (https://www.europeandataportal.eu/en/providing-data/goldbook/open-data-nutshell). [Online; accessed 5-April-2018].
[23]
A.K. Ojo, E. Curry, F.A. Zeleti, A tale of open data innovations in five smart cities, in: T.X. Bui, R.H.S. Jr. (Eds.), 48th Hawaii International Conference on System Sciences, HICSS 2015, Kauai, Hawaii, USA, January 5–8, 2015, IEEE Computer Society, 2015, pp. 2326–2335,.
[24]
H. Dong, G. Singh, A. Attri, A. El-Saddik, Open data-set of seven canadian cities, IEEE Access 5 (2017) 529–543,.
[25]
European Data Portal, Some insights in the most popular open data categories, 2017, (https://www.europeandataportal.eu/en/highlights/some-insights-most-popular-open-data-categories). [Online; accessed 2-November-2018].
[26]
Open Knowledge International, Open Data handbook: file formats, 2012, (http://opendatahandbook.org/guide/en/appendices/file-formats/). [Online; accessed 7-April-2018].
[27]
A. Sourouni, G. Kourlimpinis, S. Mouzakitis, D. Askounis, Towards the government transformation: an ontology-based government knowledge repository, . Standards Interf. 32 (1–2) (2010) 44–53,.
[28]
A. Nogales, M. Sicilia, S.S. Alonso, E.G. Barriocanal, Linking from schema.org microdata to the web of linked data: an empirical assessment, Comput. Standards Interf. 45 (2016) 90–99,.
[29]
D. Bianchini, V.D. Antonellis, M. Garda, M. Melchiori, Exploiting smart city ontology and citizens’ profiles for urban data exploration, in: H. Panetto, C. Debruyne, H.A. Proper, C.A. Ardagna, D. Roman, R. Meersman (Eds.), On the Move to Meaningful Internet Systems. OTM 2018 Conferences - Confederated International Conferences: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta, October 22–26, 2018, Proceedings, Part I, in: Lecture Notes in Computer Science, 11229, Springer, 2018, pp. 372–389,.
[30]
M. Rani, S. Alekh, A. Bhardwaj, A. Gupta, O.P. Vyas, Ontology-based classification and analysis of non- emergency smart-city events, CoRR abs/1708.00856 (2017).
[31]
World Wide Web Consortium (W3C), Data on the web best practices, 2017, (https://www.w3.org/TR/dwbp/). [Online; accessed 19-June-2018].
[32]
E.D. Portal, Re-using open data, 2017, (https://www.europeandataportal.eu/sites/default/files/re-using_open_data.pdf). [Online; accessed 9-April-2018].
[33]
A. Piscopo, Wikidata:requests for comment/Data quality framework for Wikidata, 2016, (https://www.wikidata.org/wiki/Wikidata:Requests_for_comment/Data_quality_framework_for_Wikidata). [Online; accessed 11-February-2018].
[34]
M. Färber, F. Bartscherer, C. Menne, A. Rettinger, Linked data quality of dbpedia, freebase, opencyc, wikidata, and YAGO, Semant. Web 9 (1) (2018) 77–129,.
[35]
Y. Lee, A life-cycle workflow architecture for linked data, Proceedings of the 2017 International Conference on Machine Learning and Soft Computing, ICMLSC 2017, Ho Chi Minh City, Vietnam, January 13–16, 2017, 2017, pp. 117–121,.
[36]
M. Lnenicka, J. Komarkova, Developing a government enterprise architecture framework to support the requirements of big and open linked data with the use of cloud computing, Int J. Inf. Manag. 46 (2019) 124–141,.
[37]
Working Group Note, Best practices for publishing linked data, 2014, (https://www.w3.org/TR/ld-bp/). [Online; accessed 20-May-2018].
[38]
D.W. Bernadette Hyland, The joy of data - cookbook for publishing linked government data on the web., 2011, (http://www.w3.org/2011/gld/wiki/Linked_Data_Cookbook).
[39]
B. Villazón-Terrazas, L.M. Vilches-Blázquez, O. Corcho, A. Gómez-Pérez, Methodological Guidelines for Publishing Government Linked Data, Springer New York, New York, NY, pp. 27–49. 10.1007/978-1-4614-1767-5_2.
[40]
S. Hira, P. Deshpande, Data analysis using multidimensional modeling, statistical analysis and data mining on agriculture parameters, Procedia Comput. Sci. 54 (2015) 431–439,.
[41]
M.H. Carrasco, S. Luján-Mora, A. Maté, Evaluating open access journals using semantic web technologies and scorecards, J. Inf. Sci. 43 (1) (2017) 3–16,.
[42]
R. Cyganiak, D. Reynolds, The RDF data cube vocabulary, 2014, (https://www.w3.org/TR/vocab-data-cube/). [Online; accessed 8-April-2018].
[43]
E. Kalampokis, E. Tambouris, K.A. Tarabanis, Linked open government data analytics, in: M. Wimmer, M. Janssen, H.J. Scholl (Eds.), Electronic Government - 12th IFIP WG 8.5 International Conference, EGOV 2013, Koblenz, Germany, September 16–19, 2013. Proceedings, in: Lecture Notes in Computer Science, 8074, Springer, 2013, pp. 99–110,.
[44]
L. Etcheverry, A.A. Vaisman, QB4OLAP: a vocabulary for OLAP cubes on the semantic web, in: J.F. Sequeda, A. Harth, O. Hartig (Eds.), Proceedings of the Third International Workshop on Consuming Linked Data, COLD 2012, Boston, MA, USA, November 12, 2012, in: CEUR Workshop Proceedings, 905, CEUR-WS.org, 2012.
[45]
L. Etcheverry, S.A. Gómez, A.A. Vaisman, Modeling and querying data cubes on the semantic web, CoRR abs/1512.06080 (2015).
[46]
J. Matsuda, A. Mizutani, Y. Asano, D. Yamamoto, H. Takeda, I. Ohmukai, F. Kato, S. Koide, H. Harada, S. Nishimura, Publication of statistical linked open data in Japan, Semantic Technology - 8th Joint International Conference, JIST 2018, Awaji, Japan, November 26–28, 2018, Proceedings, 2018, pp. 307–319,.
[47]
J. Klímek, J. Kucera, M. Necaský, D. Chlapek, Publication and usage of official Czech pension statistics linked open data, J. Web Semant. 48 (2018) 1–21,.
[48]
L. Galárraga, K.A.M. Mathiassen, K. Hose, Qboairbase: the European air quality database as an RDF cube, Proceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks co-located with 16th International Semantic Web Conference (ISWC 2017), Vienna, Austria, October 23rd - to - 25th, 2017., 2017.
[49]
K. Abicht, G. Alkhouri, N. Arndt, R. Meissner, M. Martin, Cubeviz.js: a lightweight framework for discovering and visualizing RDF data cubes, in: M. Eibl, M. Gaedke (Eds.), 47. Jahrestagung der Gesellschaft für Informatik, Informatik 2017, Chemnitz, Germany, September 25–29, 2017, in: LNI, P-275, GI, 2017, pp. 1915–1921,.
[50]
E. Folmer, W. Beek, L. Rietveld, S. Ronzhin, R. Geerling, D. den Haan, Enhancing the usefulness of open governmental data with linked data viewing techniques, 52nd Hawaii International Conference on System Sciences, HICSS 2019, Grand Wailea, Maui, Hawaii, USA, January 8–11, 2019, 2019, pp. 1–10.
[51]
E. Kalampokis, D. Zeginis, K.A. Tarabanis, On modeling linked open statistical data, J. Web Semant. 55 (2019) 56–68,.
[52]
G. Candela, P. Escobar, R.C. Carrasco, M. Marco-Such, A linked open data framework to enhance the discoverability and impact of culture heritage, J. Inf. Sci.10.1177/0165551518812658.
[53]
S.K. Bansal, Towards a semantic extract-transform-load (ETL) framework for big data integration, 2014 IEEE International Congress on Big Data, Anchorage, AK, USA, June 27, - July 2, 2014, IEEE Computer Society, 2014, pp. 522–529,.
[54]
R. Kimball, The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses, John Wiley, 1996.
[55]
E. Acheson, S.D. Sabbata, R.S. Purves, A quantitative analysis of global gazetteers: patterns of coverage for common feature types, Comput. Environ. Urban Syst. 64 (2017) 309–320,.
[56]
Z. Pan, T. Zhu, H. Liu, H. Ning, A survey of RDF management technologies and benchmark datasets, J. Ambient Intell. Humanized Comput. 9 (5) (2018) 1693–1704,.
[57]
D. Faye, O. Curé, G. Blin, A survey of rdf storage approaches, ARIMA J. 15 (2012) 11–35.
[58]
World Wide Web Consortium (W3C), Comparison of rdfjs libraries, 2018, (https://www.w3.org/community/rdfjs/wiki/Comparison_of_RDFJS_libraries). [Online; accessed 29-November-2018].
[59]
World Wide Web Consortium (W3C), Describing linked datasets with the void vocabulary, 2011, (https://www.w3.org/TR/void/). [Online; accessed 19-June-2018].
[60]
R.Y. Wang, D.M. Strong, Beyond accuracy: what data quality means to data consumers, J. Manag. Inf. Syst. 12 (4) (1996) 5–33.
[61]
W3C, Notation3 (n3): a readable rdf syntax, 2011, (”https://www.w3.org/TeamSubmission/n3/”). [Online; accessed 13-November-2018].

Cited By

View all

Index Terms

  1. Adding value to Linked Open Data using a multidimensional model approach based on the RDF Data Cube vocabulary
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Computer Standards & Interfaces
      Computer Standards & Interfaces  Volume 68, Issue C
      Feb 2020
      28 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 01 February 2020

      Author Tags

      1. Linked Open Data
      2. Multidimensional modelling
      3. Conceptual modelling
      4. RDF Data Cube vocabulary
      5. Semantic web
      6. Big data

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 16 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media