Estimation of l 0 norm penalized models: : A statistical treatment
References
Recommendations
Reweighted l1-norm penalized LMS for sparse channel estimation and its analysis
A new reweighted l"1-norm penalized least mean square (LMS) algorithm for sparse channel estimation is proposed and studied in this paper. Since standard LMS algorithm does not take into account the sparsity information about the channel impulse response ...
Estimation of graphical models through structured norm minimization
Estimation of Markov Random Field and covariance models from high-dimensional data represents a canonical problem that has received a lot of attention in the literature. A key assumption, widely employed, is that of sparsity of the underlying model. In ...
Image compressive sensing via Truncated Schatten-p Norm regularization
Low-rank property as a useful image prior has attracted much attention in image processing communities. Recently, a nonlocal low-rank regularization (NLR) approach toward exploiting low-rank property has shown the state-of-the-art performance in ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
Elsevier Science Publishers B. V.
Netherlands
Publication History
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Other Metrics
Citations
View Options
View options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in