Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Nonlinear entropy stable Riemann solver with heuristic logarithmic pressure augmentation for supersonic and hypersonic flows

Published: 01 July 2023 Publication History

Abstract

The work devises heuristic logarithmic pressure augmentation to overcome shock instability encountered by the nonlinear entropy stable Riemann solver under supersonic and hypersonic flows. The entropy stable Riemann solver involves three key ingredients: entropy variable, entropy conservative flux and entropy dissipation. Based on the derivation of wave strengths within entropy dissipation, the reasonable domination of the logarithmic pressure diffusion jump on entropy wave is conducive to shock stability. Thus, the basic idea of this approach is to introduce the additional logarithmic pressure diffusion term. The heuristic logarithmic pressure sensor with tanh function is constructed to detect shock discontinuities and activate this logarithmic diffusion term. In addition, the nonlinear eigenvalues are slightly modified by the neighboring cell values. Then, numerical test cases demonstrate its high shock robustness and shear layer resolution with attractive application to supersonic and hypersonic flows.

References

[1]
E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comput. 49 (1987) 91–103.
[2]
E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer. 12 (2003) 451–512.
[3]
E. Tadmor, Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws, Discrete Contin. Dyn. Syst. 36 (2016) 4579–4598.
[4]
J. Slotnick J, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, D. Mavriplis, CFD vision 2030 study: a path to revolutionary computational aerosciences, Hampton, VA, United States: NASA, 2014, NASA/CR-2014-218178.
[5]
P.D. Lax, Shock waves and entropy, Contrib. Nonlinear Funct. Anal. (1971) 603–634.
[6]
K.O. Friedrichs, Peter D. Lax, Systems of Conservation Equations with a Convex Extension, Proc. Natl. Acad. Sci. USA 68 (1971) 1686–1688.
[7]
M.S. Mock, Systems of conservation laws of mixed type, J. Differ. Equ. 37 (1980) 70–88.
[8]
F. Coquel, P. Helluy, J. Schneider, Second-order entropy diminishing scheme for the Euler equations, Int. J. Numer. Methods Fluids 50 (2006) 1029–1061.
[9]
F. Ismail, P.L. Roe, Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks, J. Comput. Phys. 228 (2009) 5410–5436.
[10]
P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys. 43 (1981) 357–372.
[11]
A.R. Winters, G.J. Gassner, Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys. 304 (2016) 72–108.
[12]
K. Kitamura, E. Shima, Y. Nakamura, P.L. Roe, Evaluation of Euler fluxes for hypersonic heating computations, AIAA J. 48 (2010) 763–776.
[13]
S.-S. Chen, C. Yan, S. Lou, B.-X. Lin, An improved entropy-consistent Euler flux in low Mach number, J. Comput. Sci. 27 (2018) 271–283.
[14]
P. Chandrashekar, Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys. 14 (2013) 1252–1286.
[15]
B. Schmidtmann, A.R. Winter, Hybrid Entropy Stable HLL-Type Riemann Solvers for Hyperbolic Conservation Laws, J. Comput. Phys. 330 (2016) 566–570.
[16]
U.S. Fjordholm, S. Mishra, E. Tadmor, Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, SIAM J. Numer. Anal. 50 (2012) 544–573.
[17]
U.S. Fjordholm, D. Ray, A Sign Preserving WENO Reconstruction Method, J. Sci. Comput. 68 (2016) 42–63.
[18]
D. Ray, P. Chandrashekar, An entropy stable finite volume scheme for the two dimensional Navier-Stokes equations on triangular grids, Appl. Math. Comput. 314 (2017) 257–286.
[19]
R.K. Dubey, B. Biswas, Suitable diffusion for constructing non-oscillatory entropy stable schemes, J. Comput. Phys. 372 (2018) 912–930.
[20]
T.C. Fisher, M.H. Carpenter, High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains, J. Comput. Phys. 252 (2013) 518–557.
[21]
T. Chen, C.W. Shu, Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys. 345 (2017) 427–461.
[22]
F. Renac, Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows, J. Comput. Phys. 382 (2019) 1–26.
[23]
N.K. Yamaleev, D.C.D.R. Fernández, J. Lou, M.H. Carpenter, Entropy stable spectral collocation schemes for the 3-D Navier-Stokes equations on dynamic unstructured grids, J. Comput. Phys. 399 (2019).
[24]
J. Dai, Q. Zuo, C. Huang, Numerical investigation of cavity-induced enhanced supersonic mixing with inclined injection strategies, Acta Astronaut. 180 (2021) 630–638.
[25]
W. Hou, J. Chang, Z. Wang, Y. Wang, W. Bao, Shock train behavior affected by continuous Mach number variation of incoming flow, Acta Astronaut. 177 (2020) 652–665.
[26]
E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, 1997.
[27]
M.S. Liou, Mass flux schemes and connection to shock instability, J. Comput. Phys. 160 (2000) 623–648.
[28]
S.-S. Chen, F.-J. Cai, H.-C. Hai, N. Wang, C. Yan, An improved AUSM-family scheme with robustness and accuracy for all Mach number flows, Appl. Math. Model. 77 (2020) 1065–1081.
[29]
S.-S. Chen, C. Yan, B.-X. Lin, L.-Y. Liu, J. Yu, Affordable shock-stable item for Godunov-type schemes against carbuncle phenomenon, J. Comput. Phys. 373 (2018) 662–672.
[30]
H.C. Yee, Upwind and symmetric shock-capturing schemes, NASA Tech. Memo. 289464 (1987).
[31]
S.D. Kim, B.J. Lee, H.J. Lee, I.S. Jeung, Robust HLLC Riemann solver with weighted average flux scheme for strong shock, J. Comput. Phys. 228 (2009) 7634–7642.
[32]
E. Toro, M. Spruce, W. Speares, Restoration of the contact surface in the HLL Riemann solver, Shock Waves 4 (1994) 25–34.
[33]
S.-S. Chen, C. Yan, X.-H. Xiang, Effective low-Mach number improvement for upwind schemes, Comput. Math. Appl. 75 (2018) 3737–3755.
[34]
M.-S. Liou, C.J. Steen, A new flux splitting scheme, J. Comput. Phys. 107 (1993) 23–39.
[35]
B. van Leer, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method, J. Comput. Phys. 32 (1979) 101–136.
[36]
M. Brio, A.R. Zakharian, G.M. Webb, Two-dimensional Riemann solver for Euler equations of gas dynamics, J. Comput. Phys. 167 (2001) 177–195.
[37]
W.J. Thayer III, New information on the two-dimensional jet interaction problem, AIAA J. 9 (1971) 539–541.
[38]
S.-S. Chen, J.-P. Li, Z. Li, W. Yuan, Z.-H. Gao, Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes, J. Comput. Phys. 456 (2022).
[39]
N.N. Smirnov, V.B. Betelin, V.F. Nikitin, L.I. Stamov, D.I. Altoukhov, Accumulation of errors in numerical simulations of chemically reacting gas dynamics, Acta Astronaut. 117 (2015) 338–355.
[40]
N.N. Smirnov, V.B. Betelin, R.M. Shagaliev, V.F. Nikitin, I.M. Belyakov, Y.N. Deryuguin, S.V. Aksenov, D.A. Korchazhkin, Hydrogen fuel rocket engines simulation using LOGOS code, Int. J. Hydrog. Energy 39 (2014) 10748–10756.

Cited By

View all
  • (2024)An image recognition method for intelligent inspection of power grid equipmentProceedings of the 2024 International Conference on Power Electronics and Artificial Intelligence10.1145/3674225.3674308(463-467)Online publication date: 19-Jan-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computers & Mathematics with Applications
Computers & Mathematics with Applications  Volume 141, Issue C
Jul 2023
256 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 01 July 2023

Author Tags

  1. Entropy stable
  2. Riemann solver
  3. Pressure augmentation
  4. Shock robustness
  5. Hypersonic

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)An image recognition method for intelligent inspection of power grid equipmentProceedings of the 2024 International Conference on Power Electronics and Artificial Intelligence10.1145/3674225.3674308(463-467)Online publication date: 19-Jan-2024

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media