Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems

Published: 15 December 2015 Publication History

Abstract

This paper deals with the adaptive mesh generation for singularly perturbed nonlinear parameterized problems with a comparative research study on them. We propose an a posteriori error estimate for singularly perturbed parameterized problems by moving mesh methods with fixed number of mesh points. The well known a priori meshes are compared with the proposed one. The comparison results show that the proposed numerical method is highly effective for the generation of layer adapted a posteriori meshes. A numerical experiment of the error behavior on different meshes is carried out to highlight the comparison of the approximated solutions.

References

[1]
H.G. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer Series of Computational Mathematics, second ed., Berlin, 2008.
[2]
G.M. Amiraliyev, H. Duru, A note on a parametrized singular perturbation problem, J. Comput. Appl. Math., 182 (2005) 233-242.
[3]
T. Pomentale, A constructive theorem of existence and uniqueness for the problem y ' = f ( x, y, λ ), y ( a ) = α, y ( b ) = ß, ZAMM Z. Angew. Math. Mech., 56 (1976) 387-388.
[4]
M. Feckan, Parametrized singularly perturbed boundary value problems, J. Math. Anal. Appl., 188 (1994) 426-435.
[5]
G.M. Amiraliyev, M. Kudu, H. Duru, Uniform difference method for a parameterized singular perturbation problem, Appl. Math. Comput., 175 (2006) 89-100.
[6]
I.G. Amiraliyev, G.M. Amiraliyev, Uniform difference method for parameterized singularly perturbed delay differential equations, Numer. Algorithms, 52 (2009) 509-521.
[7]
Z. Cen, A second-order difference scheme for a parameterized singular perturbation problem, J. Comput. Appl. Math., 221 (2008) 174-182.
[8]
F. Xie, J. Wang, W. Zhang, M. He, A novel method for a class of parameterized singularly perturbed boundary value problems, J. Comput. Appl. Math., 213 (2008) 258-267.
[9]
H. Ramos, J. Vigo-Aguiar, A new algorithm appropriate for solving singular and singularly perturbed autonomous initial-value problems, Int. J. Comput. Math., 85 (2008) 603-611.
[10]
Y. Wang, S. Chen, X. Wu, A rational spectral collocation method for solving a class of parameterized singular perturbation problems, J. Comput. Appl. Math., 233 (2010) 2652-2660.
[11]
J. Vigo-Aguiar, S. Natesan, A parallel boundary value technique for singularly perturbed two-point boundary value problems, J. Supercomput., 27 (2004) 195-206.
[12]
J. Vigo-Aguiar, S. Natesan, An efficient numerical method for singular perturbation problems, J. Comput. Appl. Math., 192 (2006) 132-141.
[13]
S. Natesan, N. Ramanujam, A 'Booster method' for singular perturbation problems arising in chemical reactor theory by incorporation of asymptotic approximations, Appl. Math. Comput., 100 (1999) 27-48.
[14]
C. Clavero, J.L. Gracia, HODIE finite difference schemes on generalized Shishkin meshes, J. Comput. Appl. Math., 164 (2004) 195-206.
[15]
Y. Qiu, D.M. Sloan, T. Tang, Numerical solution of a singularly perturbed two point boundary value problem using equidistribution: analysis of convergence, J. Comput. Appl. Math., 116 (2000) 121-143.
[16]
P. Das, S. Natesan, Adaptive mesh generation for singularly perturbed fourth-order ordinary differential equations, Int. J. Comput. Math., 92 (2015) 562-578.
[17]
P. Das, S. Natesan, Richardson extrapolation method for singularly perturbed convection-diffusion problems on adaptively generated mesh, CMES Comput. Model. Eng. Sci., 90 (2013) 463-485.
[18]
N. Kopteva, M. Stynes, A robust adapive method for a quasilinear one-dimensional convection-diffusion problem, SIAM J. Numer. Anal., 39 (2001) 1446-1467.
[19]
X. Xu, W. Huang, R.D. Russell, J.F. Williams, Convergence of de Boor's algorithm for the generation of equidistributing meshes, IMA J. Numer. Anal., 31 (2011) 580-596.
[20]
L. Liu, Y. Chen, Maximum norm a posteriori error estimates for a singularly perturbed differential difference equation with small delay, Appl. Math. Comput., 227 (2014) 801-810.
[21]
Z. Cen, A. Xu, A. Le, A second-order hybrid difference scheme for a system of singularly perturbed initial value problems, J. Comput. Appl. Math., 234 (2010) 3445-3457.

Cited By

View all
  1. Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Journal of Computational and Applied Mathematics
      Journal of Computational and Applied Mathematics  Volume 290, Issue C
      December 2015
      674 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 15 December 2015

      Author Tags

      1. 65L05
      2. 65L10
      3. 65L12
      4. 65L50
      5. 65Y20
      6. A posteriori meshes
      7. A priori meshes
      8. Mesh equidistribution
      9. Moving mesh methods
      10. Singular perturbation
      11. Uniformly convergent adaptive solution

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 22 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)Two-grid finite element methods for nonlinear time-fractional parabolic equationsNumerical Algorithms10.1007/s11075-021-01205-790:2(709-730)Online publication date: 1-Jun-2022
      • (2022)A posteriori error estimations of the Petrov-Galerkin methods for fractional Helmholtz equationsNumerical Algorithms10.1007/s11075-021-01147-089:3(1095-1127)Online publication date: 1-Mar-2022
      • (2022)A posteriori error estimation for quasilinear singularly perturbed problems with integral boundary conditionNumerical Algorithms10.1007/s11075-021-01134-589:2(791-809)Online publication date: 1-Feb-2022
      • (2019)Numerical approximation of the fractional Cahn-Hilliard equation by operator splitting methodNumerical Algorithms10.1007/s11075-019-00795-784:3(1155-1178)Online publication date: 23-Aug-2019
      • (2019)A posteriori error estimation for a singularly perturbed Volterra integro-differential equationNumerical Algorithms10.1007/s11075-019-00693-y83:2(549-563)Online publication date: 26-Mar-2019

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media