Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Study of a finite element method for the time-dependent generalized Stokes system associated with viscoelastic flow

Published: 01 August 2010 Publication History

Abstract

A three-field finite element scheme designed for solving systems of partial differential equations governing time-dependent viscoelastic flows is studied. Once a classical backward Euler time discretization is performed, the resulting three-field system of equations allows for a stable approximation of velocity, pressure and extra stress tensor, by means of continuous piecewise linear finite elements, in both two- and three- dimensional space. This is proved to hold for the linearized form of the system. An advantage of the new formulation is the fact that it provides an algorithm for the explicit iterative resolution of system nonlinearities. Convergence in an appropriate sense applying to these three flow fields is demonstrated.

References

[1]
Fortin, M., Guénette, R. and Pierre, R., Numerical analysis of the modified EVSS method. Computer Methods in Applied Mechanics and Engineering. v143 i1-2. 79-95.
[2]
Ainser, A., Dupuy, D., Panasenko, G. and Sirakov, L., Flow in a wavy tube structure: asymptotic analysis and numerical simulation. Comptes Rendus de l'Académie des Sciences de Paris. vII-b i331-9. 609-615.
[3]
Baranger, J. and Sandri, D., Approximation par éléments finis d'écoulements de fluides viscoélastiques. Existence de solutions approchées et majorations d'erreur. Comptes Rendus de l'Académie des Sciences de Paris. vI i312. 541-544.
[4]
Codina, R., Finite element approximation of the three-field formulation of the Stokes problem using arbitrary interpolations. SIAM J. Numerical Analysis. v47 i1. 699-718.
[5]
Ruas, V., Carneiro de Araujo, J.H. and Silva Ramos, M.A.M., Approximation of the three-field Stokes system via optimized quadrilateral finite elements. Mathematical Modelling and Numerical Analysis. v27 i1. 107-127.
[6]
Marchal, J.M. and Crochet, M., A new mixed finite element for calculating viscoelastic flow. Journal of Non Newtonian Fluid Mechanics. v26. 77-117.
[7]
Ruas, V., Galerkin least-squares finite element methods for the Stokes system in R3. Computer Methods in Applied Mechanics and Engineering. v143 i3. 235-256.
[8]
Franca, L., Hughes, T.J.R., Loula, A.F.D. and Miranda, I., A new family of stable element for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation. Numerische Mathematik. v53. 123-141.
[9]
Franca, L. and Stenberg, R., Error analysis of some Galerkin least-squares methods for the elasticity equations. SIAM Journal of Numerical Analysis. v26 i6. 1680-1697.
[10]
Baranger, J. and Wardi, S., Numerical analysis of a FEM for a transient viscoelastic flow. Computer Methods in Applied Mechanics and Engineering. v125 i1-4. 171-185.
[11]
Saramito, P., A new ***-scheme algorithm and incompressible FEM for viscoelastic fluid flows. RAIRO Modélisation Mathématique et Analyse Numérique. v28 i1. 1-35.
[12]
Esselaoui, D. and Machmoum, A., Finite element approximation of viscoelastic flow using characteristics method. Comupter Methods in Applied Mechanicas and Engineering. v190 i42. 5603-5618.
[13]
Ervin, V.J. and Miles, W.W., Approximation of time-dependent viscoelastic fluid flow: SUPG approximation. SIAM J. Numerical Analysis. v41 i2. 457-486.
[14]
Ervin, V.J. and Heuer, N., Approximation of time-dependent viscoelastic flow: Crank-Nicolson finite element approximation. Numerical Methods for Partial Differential Equations. v20 i2. 248-283.
[15]
Bonito, A., Clément, P. and Picasso, M., Mathematical and numerical analysis of a simplified time-dependent viscoelastic flow. Numerische Mathematik. v107 i2. 213-255.
[16]
Chrispell, J.C., Ervin, V.J. and Jenkins, E.W., A fractional step ***-method for viscolelastic fluid flow using a SUPG approximation. Int. J. of Comp. Sci. v2-3. 336-351.
[17]
Chrispell, J.C., Ervin, V.J. and Jenkins, E.W., A fractional step ***-method approximation of time-dependent viscolelastic fluid flow. Journal of Computational and Applied Mathematics. v232. 159-175.
[18]
Bird, R.B., Armstrong, R.C. and Hassager, O., Dynamics of Polymeric Liquids. 1987. Wiley-Interscience.
[19]
Brasil Jr., A.P., Carneiro de Araujo, J.H. and Ruas, V., A new algorithm for simulating viscoelastic flows accommodating piecewise linear finite elements. Journal of Computational and Applied Mathematics. v215. 311-319.
[20]
J.H. Carneiro de Araujo, P. Dias Gomes, V. Ruas, Solving stationary incompressible flow problems in stress-velocity-pressure formulation with linear finite elements, in: E.N. Mamiya (Ed.), Proceedings of COBEM 2007, (CD-ROM), Brasilia, Brazil, 2007.
[21]
Brasil Jr., A.P. and Ruas, V., Explicit solution of the incompressible Navier-Stokes equations with linear finite elements. Applied Mathematics Letters. v20. 1005-1010.
[22]
Goldberg, D. and Ruas, V., A numerical study of projection algorithms in the finite element simulation of three-dimensional viscous incompressible flow. International Journal for Numerical Methods in Fluids. v30. 233-256.
[23]
Astarita, G. and Marucci, G., Principle of Non-Newtonian Fluid Mechanics. 1974. Mc Graw Hill.
[24]
Chorin, A., Numerical simulation of the Navier-Stokes equations. Mathematics of Computation. v22. 325-352.
[25]
Temam, R., Une méthode d'approximation de la solution des équations de Navier-Stokes. Bulletin de la Société des Mathématiques de France. v98. 115-152.
[26]
Codina, R. and Zienkiewicz, O.C., CBS versus GLS stabilization of the incompressible Navier-Stokes equations and the role of the time step as a stabilization parameter. Communications in Numerical Methods in Engineering. v18. 99-112.
[27]
Rannacher, R., . In: Lecture Notes in Mathematics, 1530. Springer Verlag, Berlin.
[28]
H. Rahmoun, V. Ruas, Simulation numérique d'écoulements instationnaires de fluides incompressibles visqueux par la méthode des éléments finis appliquée dans divers domaines, Rapport de stage de DEA de mécanique, Université Pierre et Marie Curie, Paris, 1993.
[29]
Guermond, J.L. and Shen, J., A new class of truly consistent splitting schemes for incompressible flows. Journal of Computational Physics. v192. 262-276.
[30]
Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods. 1991. Springer-Verlag, Berlin.
[31]
Adams, R.A., Sobolev Spaces. 1975. Academic Press, New York.
[32]
Girault, V. and Raviart, P.A., Finite Element Methods for Navier-Stokes Equations. 1986. Springer-Verlag, Berlin.
[33]
J.L. Lions, Problèmes aux limites dans les équations aux dérivées partielles, Presses de l'Université de Montréal, Montreal, 1962.
[34]
Duvaut, G. and Lions, J.L., Les inéquations en mécanique et en physique. 1972. Dunod, Paris.
[35]
Strang, G. and Fix, G., An Analysis of the Finite Element Method. 1973. Prentice Hall, Englewood Cliffs.
[36]
Zienkiewicz, O.C., The Finite Element Method in Structural and Continuum Mechanics. 1971. McGraw Hill, London.
[37]
Ciarlet, P.G., The Finite Element Method for Elliplic Problems. 1977. North-Holland, Amsterdam.
[38]
Braess, D., Finite Elements. 1997. Cambridge University Press, Cambridge UK.
[39]
Thomée, V., . In: Springer Series in Computational Mathematics, vol. 25. Springer, Berlin.
[40]
Fujita, H. and Suzuki, T., Evolution problems. In: Ciarlet, P.G., Lions, J.L. (Eds.), Handbook of Numerical Analysis, vol. II. Finite Element Methods (Part 1), North Holland, New York. pp. 789-928.

Cited By

View all
  • (2011)Numerical analysis of a least-squares finite element method for the time-dependent advection-diffusion equationJournal of Computational and Applied Mathematics10.1016/j.cam.2011.02.022235:12(3615-3631)Online publication date: 1-Apr-2011
  1. Study of a finite element method for the time-dependent generalized Stokes system associated with viscoelastic flow

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Journal of Computational and Applied Mathematics
        Journal of Computational and Applied Mathematics  Volume 234, Issue 8
        August, 2010
        250 pages

        Publisher

        Elsevier Science Publishers B. V.

        Netherlands

        Publication History

        Published: 01 August 2010

        Author Tags

        1. Explicit solution
        2. Finite elements
        3. Piecewise linear
        4. Stokes system
        5. Three-field methods
        6. Time-dependent
        7. Viscoelastic flows

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 18 Dec 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2011)Numerical analysis of a least-squares finite element method for the time-dependent advection-diffusion equationJournal of Computational and Applied Mathematics10.1016/j.cam.2011.02.022235:12(3615-3631)Online publication date: 1-Apr-2011

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media