Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Technical Section: Discrete Laplace-Beltrami operators for shape analysis and segmentation

Published: 01 June 2009 Publication History

Abstract

Shape analysis plays a pivotal role in a large number of applications, ranging from traditional geometry processing to more recent 3D content management. In this scenario, spectral methods are extremely promising as they provide a natural library of tools for shape analysis, intrinsically defined by the shape itself. In particular, the eigenfunctions of the Laplace-Beltrami operator yield a set of real-valued functions that provide interesting insights in the structure and morphology of the shape. In this paper, we first analyze different discretizations of the Laplace-Beltrami operator (geometric Laplacians, linear and cubic FEM operators) in terms of the correctness of their eigenfunctions with respect to the continuous case. We then present the family of segmentations induced by the nodal sets of the eigenfunctions, discussing its meaningfulness for shape understanding.

References

[1]
ARPACK. The Arnoldi package {http://www.caam.rice.edu/software/ARPACK/}.
[2]
Attene, M., Katz, S., Mortara, M., Patanè, G., Spagnuolo, M. and Tal, A., Mesh segmentation-a comparative study. In: Proceedings of shape modeling international, pp. 14-25.
[3]
Attene, M., Robbiano, F., Spagnuolo, M. and Falcidieno, B., Semantic annotation of 3D surface meshes based on feature characterization. Proceedings of the semantic and digital media technologies. v4816. 126-139.
[4]
Bar, C., On nodal sets for Dirac and Laplace operators. Communications in Mathematical Physics. v188. 709-721.
[5]
Belkin, M. and Niyogi, P., Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computations. v15. 1373-1396.
[6]
Belkin, M., Sun, J. and Wang, Y., Discrete Laplace operator on meshed surfaces. In: Symposium on computational geometry, pp. 278-287.
[7]
Berger, M., Gauduchon, P. and Mazet, E., Le Spectre d'une Variété Riemannienne. 1971. Springer, Berlin.
[8]
Biasotti, S., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C. and Patanè, G., 3D shape description and matching based on properties of real functions. In: Eurographics tutorial proceedings, pp. 949-998.
[9]
Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D. and Landi, C., Describing shapes by geometrical-topological properties of real functions. ACM Computing Surveys. v40 i4. 1-87.
[10]
Biederman, I., Recognition-by-components: a theory of human image understanding. Psychological Review. v94 i2. 115-147.
[11]
Chavel, I., Eigenvalues in Riemannian geometry. 1984. Academic Press, New York.
[12]
Cheng, S.-Y., Eigenfunctions and nodal sets. Comment: Mathematics Helvetici. v51. 43-55.
[13]
Courant, R. and Hilbert, D., Methods of mathematical physics, vol. 1. 1953. Interscience, New York.
[14]
Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S. and Liu, J.W.H., A supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and Applications. v20 i3. 720-755.
[15]
Desbrun, M., Kanzo, E. and Tong, Y., Discrete differential forms for computational modeling. In: ACM Siggraph '05 course notes on discrete differential geometry,
[16]
Desbrun, M., Meyer, M., Schröder, P. and Barr, A.H., Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the ACM Siggraph'99, pp. 317-324.
[17]
Dong, S., Bremer, P.-T., Garland, M. and Pascucci, V., Spectral surface quadrangulation. In: Proceedings of the ACM Siggraph, pp. 1057-1066.
[18]
Donnelly, H. and Fefferman, C., Nodal sets for eigenfunctions of the Laplacian on surfaces. Journal of American Mathematical Society. v3. 333-353.
[19]
Dyer R, Zhang H, Möller T, Clements A. An investigation of the spectral robustness of mesh Laplacians. Technical Report 2007-17, SFU CS School; 2007.
[20]
Dziuk, G., Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (Eds.), Partial differential equations and calculus of variations, pp. 142-155.
[21]
Eremenko, A., Jakobson, D. and Nadirashvili, N., On nodal sets and nodal domains on S2 and R2. Annales de l'Istitut Fourier. v57 i7. 2345-2360.
[22]
Floater, M.S. and Hormann, K., Surface parameterization: a tutorial and survey. In: Advances in multiresolution for geometric modelling, Springer, Berlin. pp. 157-186.
[23]
Giorgi D, Biasotti S, Paraboschi L. Watertight models track. Technical Report 09, IMATI, Genova; 2007.
[24]
Gomes FM, Sorensen DC. ARPACK++: A C++ implementation of ARPACK eigenvalue package, 1997.
[25]
Gotsman, C., Gu, X. and Sheffer, A., Fundamentals of spherical parametrization for 3D meshes. ACM Transactions on Graphics. v3 i22. 358-363.
[26]
Hoffman, D.D. and Richards, W.A., Parts of recognition. Cognition. v18 i1-3. 65-96.
[27]
Jain, V. and Zhang, H., Robust 3D shape correspondence in the spectral domain. In: Proceedings of the shape modeling and applications, pp. 118-129.
[28]
Jain, V. and Zhang, H., A spectral approach to shape-based retrieval of articulated 3D models. Computer Aided Design. v39 i5. 398-407.
[29]
Jakobson, D., Nadirashvili, N. and Toth, J., Geometric properties of eigenfunctions. Russian Mathematical Surveys. v56. 67-88.
[30]
Karni, Z. and Gotsman, C., Spectral compression of mesh geometry. In: ACM Siggraph, pp. 279-286.
[31]
Katz, S., Leifman, G. and Tal, A., Mesh segmentation using feature point and core extraction. The Visual Computer. v21. 649-658.
[32]
Keating, J.P., Mezzadri, F. and Monastra, A.G., Nodal domain distributions for quantum maps. Journal of Physics A: Mathematical General. v36 i3. 53-59.
[33]
Lévy, B., Laplace-Beltrami eigenfunctions: towards an algorithm that understands geometry. In: Proceedings of shape modeling and applications, pp. 13
[34]
Lévy, B. and Vallet, B., Spectral geometry processing with manifold harmonics. Computer Graphics Forum. v2 i27.
[35]
Liu, R. and Zhang, H., Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum. v26 i3. 385-394.
[36]
Meyer M, Desbrun M, Schröder P, Barr AH. Discrete differential-geometry operators for triangulated 2-manifolds. In: Proceedings of the VisMath, 2002.
[37]
Nadirashvili, N.S., Metric properties of eigenfunctions of the Laplace operator on manifolds. Annales de l'Istitut Fourier. v41 i1. 259-265.
[38]
Niethammer M, Reuter M, Wolter F-E, Bouix S, Peinecke N, Koo M-S, et al. Global medical shape analysis using the Laplace-Beltrami spectrum. In: MICCAI conference, Berlin: Springer; 2007. p. 850-7.
[39]
Ovsjanikov M, Sun J, Guibas L. Global intrinsic symmetries of shapes. In: Eurographics symposium on geometry processing (SGP), 2008.
[40]
Parlett, B.N., The symmetric eigenvalue problem. 1980. Prentice-Hall, Englewood Cliffs, NJ.
[41]
Patanè, G., Spagnuolo, M. and Falcidieno, B., Para-graph: graph-based parameterization of triangle meshes with arbitrary genus. Computer Graphics Forum. v23 i4. 783-797.
[42]
Patanè, G., Spagnuolo, M. and Falcidieno, B., Families of cut-graphs for bordered meshes with arbitrary genus. Graphical Models. v69 i2. 119-138.
[43]
Patanè G, Spagnuolo M, Falcidieno B. Topological generators and cut-graphs of arbitrary triangle meshes. In: Proceedings of shape modeling and applications, 2007. p. 113-22.
[44]
Peinecke, N., Wolter, F.-E. and Reuter, M., Laplace spectra as fingerprints for image recognition. Computer Aided Design. v39 i6. 460-476.
[45]
Pinkall, U. and Polthier, K., Computing discrete minimal surfaces and their conjugates. Experimental Mathematics. v1 i2.
[46]
Reuter M. Laplace Spectra for Shape Recognition. Books on Demand, ISBN 3-8334-5071-1, 2006.
[47]
Reuter M, Niethammer M, Wolter F-E, Bouix S, Shenton ME. Global medical shape analysis using the volumetric Laplace spectrum. In: IEEE Proceedings of the cyberworlds, 2007. p. 417-26.
[48]
Reuter M, Wolter F-E, Peinecke N. Laplace-spectra as fingerprints for shape matching. In: Proceedings of the ACM symposium on solid and physical modeling, 2005. p. 101-6.
[49]
Reuter, M., Wolter, F.-E. and Peinecke, N., Laplace-Beltrami spectra as Shape-DNA of surfaces and solids. Computer Aided Design. v38 i4. 342-366.
[50]
Reuter M, Wolter F-E, Shenton M, Niethammer M. Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis. Computer Aided Design, 2009.
[51]
Rosenberg, S., The Laplacian on a Riemannian manifold. 1997. Cambridge University Press, Cambridge.
[52]
Rustamov, R.M., Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Symposium on geometry processing, pp. 225-233.
[53]
Savo, A., Lower bounds for the nodal length of eigenfunctions of the Laplacian. Annals of Global Analysis and Geometry. v19 i2. 133-151.
[54]
Shamir, A., Segmentation and shape extraction of 3D boundary meshes. In: Eurographics STAR report,
[55]
Steiner, D. and Fischer, A., Cutting 3D freeform objects with genus-n into single boundary surfaces using topological graphs. In: Proceedings of the symposium on solid modeling and applications, pp. 336-343.
[56]
Strang, G. and Fix, G.J., An analysis of the finite element method. 1973. Prentice-Hall, Englewood Cliffs, NJ.
[57]
Taubin, G., A signal processing approach to fair surface design. In: ACM Siggraph'95, pp. 351-358.
[58]
Wardetzky, M., Bergou, M., Harmon, D., Zorin, D. and Grinspun, E., Discrete quadratic curvature energies. Computer Aided Geometric Design. v8 i21. 398-407.
[59]
Wardetzky, M., Mathur, S., Kalberer, F. and Grinspun, E., Discrete Laplace operators: no free lunch. In: Proceedings of the symposium on geometry processing,
[60]
Xu, G., Discrete Laplace-Beltrami operators and their convergence. Computer Aided Geometric Design. v21. 767-784.
[61]
Zhang, E., Mischaikow, K. and Turk, G., Feature-based surface parameterization and texture mapping. ACM Transactions on Graphics. v24 i1. 1-27.
[62]
Zhang, H., van Kaick, O. and Dyer, R., Spectral methods for mesh processing and analysis. In: Eurographics STAR report, pp. 1-22.

Cited By

View all
  • (2024)Variational Feature Extraction in Scientific VisualizationACM Transactions on Graphics10.1145/365821943:4(1-16)Online publication date: 19-Jul-2024
  • (2023)Modeling dynamics over meshes with gauge equivariant nonlinear message passingProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3666794(15277-15302)Online publication date: 10-Dec-2023
  • (2023)SENEEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.106332123:PCOnline publication date: 1-Aug-2023
  • Show More Cited By
  1. Technical Section: Discrete Laplace-Beltrami operators for shape analysis and segmentation

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Computers and Graphics
      Computers and Graphics  Volume 33, Issue 3
      June, 2009
      247 pages

      Publisher

      Pergamon Press, Inc.

      United States

      Publication History

      Published: 01 June 2009

      Author Tags

      1. Eigenfunctions
      2. Laplace-Beltrami operator
      3. Nodal domains
      4. Nodal sets
      5. Shape analysis
      6. Shape segmentation

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 23 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media