Nothing Special   »   [go: up one dir, main page]

skip to main content
review-article

Content-driven music recommendation: : Evolution, state of the art, and challenges

Published: 25 June 2024 Publication History

Abstract

The music domain is among the most important ones for adopting recommender systems technology. In contrast to most other recommendation domains, which predominantly rely on collaborative filtering (CF) techniques, music recommenders have traditionally embraced content-based (CB) approaches. In the past years, music recommendation models that leverage collaborative and content data – which we refer to as content-driven models – have been replacing pure CF or CB models. In this survey, we review 55 articles on content-driven music recommendation. Based on a thorough literature analysis, we first propose an onion model comprising five layers, each of which corresponds to a category of music content we identified: signal, embedded metadata, expert-generated content, user-generated content, and derivative content. We provide a detailed characterization of each category along several dimensions. Second, we identify six overarching challenges, according to which we organize our main discussion: increasing recommendation diversity and novelty, providing transparency and explanations, accomplishing context-awareness, recommending sequences of music, improving scalability and efficiency, and alleviating cold start. Each article addresses one or more of these challenges and is categorized according to the content layers of our onion model, the article’s goal(s), and main methodological choices. Furthermore, articles are discussed in temporal order to shed light on the evolution of content-driven music recommendation strategies. Finally, we provide our personal selection of the persisting grand challenges which are still waiting to be solved in future research endeavors.

References

[1]
Koren Y., Bell R., Volinsky C., Matrix factorization techniques for recommender systems, Computer 42 (2009) 30–37.
[2]
Schedl M., Zamani H., Chen C.-W., Deldjoo Y., Elahi M., Current challenges and visions in music recommender systems research, Int. J. Multimed. Inf. Retr. 7 (2) (2018) 95–116.
[3]
Rendle S., Freudenthaler C., Gantner Z., Schmidt-Thieme L., BPR: Bayesian personalized ranking from implicit feedback, in: Proc. UAI, AUAI Press, Montreal, QC, Canada, 2009, pp. 452–461.
[4]
X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural Collaborative Filtering, in: Proc. WWW, Perth, Australia, 2017, pp. 173–182.
[5]
Deldjoo Y., Schedl M., Hidasi B., Wei Y., He X., Multimedia recommender systems: Algorithms and challenges, in: Recommender Systems Handbook, Springer, 2022, pp. 973–1014.
[6]
Wu S., Sun F., Zhang W., Xie X., Cui B., Graph neural networks in recommender systems: a survey, ACM Comput. Surv. (2020).
[7]
S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D. Ravichandran, M. Aly, Video suggestion and discovery for youtube: taking random walks through the view graph, in: Proceedings of the 17th International Conference on World Wide Web, 2008, pp. 895–904.
[8]
B. Chen, J. Wang, Q. Huang, T. Mei, Personalized video recommendation through tripartite graph propagation, in: Proceedings of the 20th ACM International Conference on Multimedia, 2012, pp. 1133–1136.
[9]
R. Yan, M. Lapata, X. Li, Tweet recommendation with graph co-ranking, in: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2012, pp. 516–525.
[10]
J. Chen, H. Zhang, X. He, L. Nie, W. Liu, T.-S. Chua, Attentive collaborative filtering: Multimedia recommendation with item-and component-level attention, in: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2017, pp. 335–344.
[11]
R. Ying, R. He, K. Chen, P. Eksombatchai, W.L. Hamilton, J. Leskovec, Graph convolutional neural networks for web-scale recommender systems, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 974–983.
[12]
Wei Y., Wang X., Nie L., He X., Hong R., Chua T.-S., MMGCN: Multi-modal graph convolution network for personalized recommendation of micro-video, in: Proceedings of the 27th ACM International Conference on Multimedia, 2019, pp. 1437–1445.
[13]
Li X., Wang X., He X., Chen L., Xiao J., Chua T.-S., Hierarchical fashion graph network for personalized outfit recommendation, 2020.
[14]
R.v.d. Berg, T.N. Kipf, M. Welling, Graph convolutional matrix completion, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018.
[15]
Zhang J., Shi X., Zhao S., King I., STAR-GCN: Stacked and reconstructed graph convolutional networks for recommender systems, in: The 28th International Joint Conference on Artificial Intelligence, 2019, pp. 4264–4270.
[16]
Wu J., He X., Wang X., Wang Q., Chen W., Lian J., Xie X., Zhang Y., Graph convolution machine for context-aware recommender system, 2020, arXiv preprint arXiv:2001.11402.
[17]
Afchar D., Melchiorre A.B., Schedl M., Hennequin R., Epure E.V., Moussallam M., Explainability in music recommender systems, AI Mag. (2021).
[18]
Zhang Y., Chen X., Explainable recommendation: A survey and new perspectives, Found. Trends Inf. Retr. 14 (1) (2020) 1–101.
[19]
Tintarev N., Masthoff J., Explaining recommendations: Design and evaluation, in: Recommender Systems Handbook, Springer, 2015, pp. 353–382.
[20]
Deldjoo Y., Schedl M., Cremonesi P., Pasi G., Recommender systems leveraging multimedia content, ACM Comput. Surv. 53 (5) (2020) 106:1–106:38.
[21]
Shi Y., Larson M.A., Hanjalic A., Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges, ACM Comput. Surv. 47 (1) (2014) 3:1–3:45.
[22]
Musto C., Gemmis M.d., Lops P., Narducci F., Semeraro G., Semantics and content-based recommendations, in: Recommender Systems Handbook, Springer, 2022, pp. 251–298.
[23]
Schedl M., Knees P., McFee B., Bogdanov D., Music recommendation systems: Techniques, use cases, and challenges, in: Recommender Systems Handbook, third Edition, Springer, 2021.
[24]
Knees P., Schedl M., A survey of music similarity and recommendation from music context data, ACM Trans. Multimed. Comput. Commun. Appl. 10 (1) (2013).
[25]
Guo Q., Zhuang F., Qin C., Zhu H., Xie X., Xiong H., He Q., A survey on knowledge graph-based recommender systems, Trans. Knowl. Data Eng. (2020).
[26]
Kaminskas M., Ricci F., Ic information retrieval and recommendation: State of the art and challenges, Comp. Sci. Rev. 6 (2) (2012) 89–119.
[27]
Quadrana M., Cremonesi P., Jannach D., Sequence-aware recommender systems, ACM Comput. Surv. 51 (4) (2018) 66:1–66:36.
[28]
Bonnin G., Jannach D., Automated generation of music playlists: Survey and experiments, ACM Comput. Surv. 47 (2) (2014) 26:1–26:35,. URL http://doi.acm.org/10.1145/2652481.
[29]
Zhang S., Yao L., Sun A., Tay Y., Deep learning based recommender system: A survey and new perspectives, ACM Comput. Surv. 52 (1) (2019) 5:1–5:38.
[30]
Y.V.S. Murthy, S.G. Koolagudi, Content-based music information retrieval (CB-MIR) and its applications toward the music industry: A review 51 (3) (2018) 45:1–45:46.
[31]
Hariri N., Mobasher B., Burke R., Context-aware music recommendation based on latenttopic sequential patterns, in: Proc. RecSys, ACM, Dublin, Ireland, 2012, pp. 131–138.
[32]
P. Melville, R.J. Mooney, R. Nagarajan, Content-boosted Collaborative Filtering for Improved Recommendations, in: Proc. AAAI, Edmonton, AB, Canada, 2002, pp. 187–192.
[33]
Schedl M., Gómez E., Urbano J., Music information retrieval: Recent developments and applications, Found. Trends Inf. Retr. 8 (2–3) (2014) 127–261.
[34]
D. Bogdanov, N. Wack, E. Gómez, S. Gulati, P. Herrera, O. Mayor, G. Roma, J. Salamon, J.R. Zapata, X. Serra, ESSENTIA: an Audio Analysis Library for Music Information Retrieval, in: Proc. ISMIR, Curitiba, Brazil, 2013, pp. 493–498.
[35]
Y. Raimond, S.A. Abdallah, M.B. Sandler, F. Giasson, The Music Ontology, in: Proc. ISMIR, Vienna, Austria, 2007, pp. 417–422.
[36]
N. Corthaut, S. Govaerts, K. Verbert, E. Duval, Connecting the Dots: Music Metadata Generation, Schemas and Applications, in: Proc. ISMIR, Philadelphia, USA, 2008, pp. 249–254.
[37]
A.L.-C. Wang, An Industrial Strength Audio Search Algorithm, in: Proc. ISMIR, Baltimore, MD, USA, 2003.
[38]
M. Prockup, A.F. Ehmann, F. Gouyon, E. Schmidt, Ò. Celma, Y.E. Kim, Modeling Genre with the Music Genome Project: Comparing Human-Labeled Attributes and Audio Features, in: Proc. ISMIR, Málaga, Spain, 2015.
[39]
Ibrahim K.M., Royo-Letelier J., Epure E.V., Peeters G., Richard G., Audio-based auto-tagging with contextual tags for music, in: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2020, Barcelona, Spain, May 4-8, 2020, IEEE, 2020, pp. 16–20,.
[40]
Lin Y., Chen H.H., Tag propagation and cost-sensitive learning for music auto-tagging, IEEE Trans. Multim. 23 (2021) 1605–1616,.
[41]
Ferraro A., Bogdanov D., Serra X., Jeon J.H., Yoon J., How low can you go? Reducing frequency and time resolution in current CNN architectures for music auto-tagging, in: 28th European Signal Processing Conference, EUSIPCO 2020, Amsterdam, Netherlands, January 18-21, 2021, IEEE, 2020, pp. 131–135,.
[42]
Moens M.-F., Li J., Chua T.-S., Mining User Generated Content, CRC Press, 2014.
[43]
B. Whitman, S. Lawrence, Inferring Descriptions and Similarity for Music from Community Metadata, in: Proc. ICMC, Göteborg, Sweden, 2002.
[44]
Lamere P., Social tagging and music information retrieval, J. New Music Res.: Special Issue: Genres Tags – Music Inf. Retr. Age Social Tagging 37 (2) (2008) 101–114.
[45]
Levy M., Sandler M., Learning latent semantic models for music from social tags, J. New Music Res. 37 (2) (2008) 137–150.
[46]
Downie J.S., Hu X., Review mining for music digital libraries: Phase II, in: Proc. JCDL, ACM, Chapel Hill, NC, USA, 2006, pp. 196–197.
[47]
B. Fields, C. Rhodes, Listen To Me – Don’t Listen To Me: What Communities of Critics Tell Us About Music, in: Proc. ISMIR, New York, NY, USA, 2016.
[48]
B. McFee, G. Lanckriet, Hypergraph Models of Playlist Dialects, in: Proc. ISMIR, Porto, Portugal, 2012.
[49]
D. Hauger, M. Schedl, Music Tweet Map: A Browsing Interface to Explore the Microblogosphere of Music, in: Proc. CBMI, Bucharest, Romania, 2016, pp. 1–4.
[50]
P. Knees, E. Pampalk, G. Widmer, Artist Classification with Web-based Data, in: Proc. ISMIR, Barcelona, Spain, 2004, pp. 517–524.
[51]
Cheliotis G., Yew J., An analysis of the social structure of remix culture, in: Proc. C&T, ACM, University Park, PA, USA, 2009, pp. 165–174.
[52]
Hamasaki M., Takeda H., Nishimura T., Network analysis of massively collaborative creation of multimedia contents: Case study of hatsune miku videos on nico nico douga, in: Proc. UXTV, ACM, Silicon Valley, CA, USA, 2008, pp. 165–168.
[53]
Tsukuda K., Hamasaki M., Goto M., Why did you cover that song?: Modeling N-th order derivative creation with content popularity, in: Proc. CIKM, ACM, Indianapolis, IN, USA, 2016, pp. 2239–2244.
[54]
Slaney M., Web-scale multimedia analysis: Does content matter?, IEEE MultiMedia 18 (2) (2011) 12–15.
[55]
Zangerle E., Pichl M., Schedl M., Culture-aware music recommendation, in: Proc. UMAP, ACM, Singapore, Singapore, 2018, pp. 357–358.
[56]
M. Moscati, E. Parada-Cabaleiro, Y. Deldjoo, E. Zangerle, M. Schedl, Music4All-Onion. A Large-Scale Multi-faceted Content-Centric Music Recommendation Dataset, in: Proceedings of the 31th ACM International Conference on Information & Knowledge Management, CIKM’22, 2022.
[57]
S. Oramas, O. Nieto, M. Sordo, X. Serra, A deep multimodal approach for cold-start music recommendation, in: Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems, 2017, pp. 32–37.
[58]
Deldjoo Y., Dacrema M.F., Constantin M.G., Eghbal-zadeh H., Cereda S., Schedl M., Ionescu B., Cremonesi P., Movie genome: alleviating new item cold start in movie recommendation, User Model. User Adapt. Interact. 29 (2) (2019) 291–343,.
[59]
Ning X., Karypis G., Sparse linear methods with side information for top-n recommendations, in: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ’12, Association for Computing Machinery, New York, NY, USA, 2012, pp. 155–162,.
[60]
Zheng Y., Mobasher B., Burke R., Similarity-based context-aware recommendation, in: International Conference on Web Information Systems Engineering, Springer, 2015, pp. 431–447.
[61]
Sassi I.B., Yahia S.B., Liiv I., MORec: At the crossroads of context-aware and multi-criteria decision making for online music recommendation, Expert Syst. Appl. 183 (2021).
[62]
van den Oord A., Dieleman S., Schrauwen B., Deep content-based music recommendation, in: Burges C.J.C., Bottou L., Welling M., Ghahramani Z., Weinberger K.Q. (Eds.), Advances in Neural Information Processing Systems, Vol. 26, Curran Associates, Inc., 2013, pp. 2643–2651. URL http://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf.
[63]
Lin Q., Niu Y., Zhu Y., Lu H., Mushonga K.Z., Niu Z., Heterogeneous knowledge-based attentive neural networks for short-term music recommendations, IEEE Access 6 (2018) 58990–59000.
[64]
Sachdeva N., Gupta K., Pudi V., Attentive neural architecture incorporating song features for music recommendation, in: Proc. RecSys, ACM, Vancouver, BC, Canada, 2018, pp. 417–421.
[65]
Jin Y., Htun N.N., Tintarev N., Verbert K., ContextPlay: Evaluating user control for context-aware music recommendation, in: Proc. UMAP, ACM, Larnaca, Cyprus, 2019, pp. 294–302.
[66]
Vall A., Dorfer M., Eghbal-Zadeh H., Schedl M., Burjorjee K., Widmer G., Feature-combination hybrid recommender systems for automated music playlist continuation, User Model. User-Adapt. Interact. 29 (2) (2019) 527–572.
[67]
Weng H., Chen J., Wang D., Zhang X., Yu D., Graph-based attentive sequential model with metadata for music recommendation, IEEE Access (2022).
[68]
Wang D., Xu G., Deng S., Music recommendation via heterogeneous information graph embedding, in: 2017 International Joint Conference on Neural Networks, IJCNN, IEEE, 2017, pp. 596–603.
[69]
Y. Wei, X. Wang, L. Nie, X. He, T.-S. Chua, Graph-refined convolutional network for multimedia recommendation with implicit feedback, in: Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 3541–3549.
[70]
Cai D., Qian S., Fang Q., Xu C., Heterogeneous hierarchical feature aggregation network for personalized micro-video recommendation, IEEE Trans. Multimed. 24 (2021) 805–818.
[71]
Tao Z., Wei Y., Wang X., He X., Huang X., Chua T.-S., MGAT: multimodal graph attention network for recommendation, Inf. Process. Manage. 57 (5) (2020).
[72]
Koch C., Lins B., Rizk A., Steinmetz R., Hausheer D., Vfetch: Video prefetching using pseudo subscriptions and user channel affinity in YouTube, in: Proc. CNSM, IEEE, Tokyo, Japan, 2017, pp. 1–6.
[73]
Koch C., Krupii G., Hausheer D., Proactive caching of music videos based on audio features, mood, and genre, in: Proc. MMSys, ACM, Taipei, Taiwan, 2017, pp. 100–111.
[74]
K. Yoshii, M. Goto, K. Komatani, T. Ogata, H.G. Okuno, Hybrid Collaborative and Content-based Music Recommendation Using Probabilistic Model with Latent User Preferences, in: Proc. ISMIR, Victoria, BC, Canada, 2006, pp. 296–301.
[75]
Shao B., Ogihara M., Wang D., Li T., Music recommendation based on acoustic features and user access patterns, IEEE Trans. Audio, Speech Lang. Process. 17 (8) (2009) 1602–1611.
[76]
Schedl M., Hauger D., Tailoring music recommendations to users by considering diversity, mainstreaminess, and novelty, in: Proc. SIGIR, ACM, Santiago, Chile, 2015, pp. 947–950.
[77]
R.S. Oliveira, C. Nóbrega, L.B. Marinho, N. Andrade, A Multiobjective Music Recommendation Approach for Aspect-Based Diversification, in: Proc. ISMIR, Suzhou, China, 2017, pp. 414–420.
[78]
Tommasel A., Rodriguez J.M., Godoy D., Haven’t I just listened to this?: Exploring diversity in music recommendations, in: UMAP ’22: 30th ACM Conference on User Modeling, Adaptation and Personalization, Barcelona, Spain, July 4 - 7, 2022, Adjunct Proceedings, ACM, 2022, pp. 35–40,.
[79]
Jin Y., Tintarev N., Verbert K., Effects of individual traits on diversity-aware music recommender user interfaces, in: Proc. UMAP, ACM, Singapore, Singapore, 2018, pp. 291–299.
[80]
K. Seyerlehner, P. Knees, D. Schnitzer, G. Widmer, Browsing Music Recommendation Networks, in: Proc. ISMIR, Kobe, Japan, 2009, pp. 129–134.
[81]
McFee B., Barrington L., Lanckriet G.R.G., Learning content similarity for music recommendation, IEEE Trans. Audio, Speech Lang. Process. 20 (8) (2012) 2207–2218.
[82]
Y. Hu, M. Ogihara, NextOne Player: A Music Recommendation System Based on User Behavior, in: Proc. ISMIR, Miami, FL, USA, 2011, pp. 103–108.
[83]
Kowald D., Lex E., Schedl M., Utilizing human memory processes to model genre preferences for personalized music recommendations, 2020, CoRR abs/2003.10699.
[84]
P. Chordia, M. Godfrey, A. Rae, Extending Content-Based Recommendation: The Case of Indian Classical Music, in: Proc. ISMIR, Philadelphia, USA, 2008, pp. 571–576.
[85]
K. Yoshii, M. Goto, Continuous pLSI and Smoothing Techniques for Hybrid Music Recommendation, in: Proc. ISMIR, Kobe, Japan, 2009, pp. 339–344.
[86]
Schnitzer D., Flexer A., Schedl M., Widmer G., Local and global scaling reduce hubs in space, J. Mach. Learn. Res. 13 (Oct) (2012) 2871–2902.
[87]
Herlocker J.L., Konstan J.A., Riedl J., Explaining collaborative filtering recommendations, in: Proc. CSCW, ACM, Philadelphia, PA, USA, 2000, pp. 241–250.
[88]
E. Pampalk, M. Goto, MusicSun: A New Approach to Artist Recommendation, in: Proc. ISMIR, Vienna, Austria, 2007, pp. 101–104.
[89]
S.J. Green, P. Lamere, J. Alexander, F. Maillet, S. Kirk, J. Holt, J. Bourque, X.-W. Mak, Generating Transparent, Steerable Recommendations from Textual Descriptions of Items, in: Proc. RecSys, New York, USA, 2009, pp. 281–284.
[90]
I. Andjelkovic, D. Parra, J. O’Donovan, Moodplay: Interactive Mood-based Music Discovery and Recommendation, in: Proc. UMAP, Halifax, Nova Scotia, Canada, 2016, pp. 275–279, https://doi.org/10.1145/2930238.2930280.
[91]
McInerney J., Lacker B., Hansen S., Higley K., Bouchard H., Gruson A., Mehrotra R., Explore, exploit, and explain: Personalizing explainable recommendations with bandits, in: Proc. RecSys, ACM, Vancouver, BC, Canada, 2018, pp. 31–39.
[92]
M. Behrooz, S. Mennicken, J. Thom, R. Kumar, H. Cramer, Augmenting Music Listening Experiences on Voice Assistants, in: Proc. ISMIR, Delft, the Netherlands, 2019, pp. 303–310.
[93]
Melchiorre A.B., Haunschmid V., Schedl M., Widmer G., LEMONS: listenable explanations for music recOmmeNder systems, in: Proc. ECIR, Springer, Virtual, 2021, pp. 531–536.
[94]
Park M., Lee K., Exploiting negative preference in content-based music recommendation with contrastive learning, in: Golbeck J., Harper F.M., Murdock V., Ekstrand M.D., Shapira B., Basilico J., Lundgaard K.T., Oldridge E. (Eds.), RecSys ’22: Sixteenth ACM Conference on Recommender Systems, Seattle, WA, USA, September 18 - 23, 2022, ACM, 2022, pp. 229–236,.
[95]
Millecamp M., Conati C., Verbert K., “Knowing me, knowing you”: personalized explanations for a music recommender system, User Model. User Adapt. Interact. 32 (1–2) (2022) 215–252,.
[96]
Kaminskas M., Ricci F., Schedl M., Location-aware music recommendation using auto-tagging and hybrid matching, in: Proc. RecSys, ACM, Hong Kong, China, 2013, pp. 17–24.
[97]
Cheng Z., Shen J., On effective location-aware music recommendation, ACM Trans. Inf. Syst. 34 (2) (2016) 13.
[98]
Schedl M., Schnitzer D., Location-aware music artist recommendation, in: Proc. MMM, Springer, Dublin, Ireland, 2014, pp. 205–213.
[99]
Álvarez P., Zarazaga-Soria F.J., Baldassarri S., Mobile music recommendations for runners based on location and emotions: The DJ-running system, Pervasive Mob. Comput. 67 (2020).
[100]
Yakura H., Nakano T., Goto M., An automated system recommending background music to listen to while working, User Model. User Adapt. Interact. 32 (3) (2022) 355–388,.
[101]
Kuo F.-F., Chiang M.-F., Shan M.-K., Lee S.-Y., Emotion-based music recommendation by association discovery from film music, in: Proc. ACM Multimedia, ACM, Singapore, Singapore, 2005, pp. 507–510.
[102]
Rho S., Han B.-j., Hwang E., SVR-based music mood classification and context-based music recommendation, in: Proc. ACM Multimedia, ACM, Beijing, China, 2009, pp. 713–716.
[103]
Chen C.-M., Tsai M.-F., Liu J.-Y., Yang Y.-H., Using emotional context from article for ic recommendation, in: Proc. ACM Multimedia, ACM, Barcelona, Spain, 2013, pp. 649–652.
[104]
Deng S., Wang D., Li X., Xu G., Exploring user emotion in microblogs for music recommendation, Expert Syst. Appl. 42 (23) (2015) 9284–9293.
[105]
Bontempelli T., Chapus B., Rigaud F., Morlon M., Lorant M., Salha-Galvan G., Flow moods: Recommending music by moods on deezer, in: Golbeck J., Harper F.M., Murdock V., Ekstrand M.D., Shapira B., Basilico J., Lundgaard K.T., Oldridge E. (Eds.), RecSys ’22: Sixteenth ACM Conference on Recommender Systems, Seattle, WA, USA, September 18 - 23, 2022, ACM, 2022, pp. 452–455,.
[106]
C.S. Mesnage, A. Rafiq, S. Dixon, R. Brixtel, Music Discovery with Social Networks, in: Proc. WOMRAD, Chicago, IL, USA, 2011.
[107]
Sánchez-Moreno D., Pérez-Marcos J., González A.B.G., Batista V.F.L., García M.N.M., Social influence-based similarity measures for user-user collaborative filtering applied to music recommendation, in: Proc. DCAI, Vol. 801, Springer, Toledo, Spain, 2018, pp. 267–274.
[108]
Chen J., Ying P., Zou M., Improving music recommendation by incorporating social influence, Multim. Tools Appl. 78 (3) (2019) 2667–2687.
[109]
Zangerle E., Pichl M., Schedl M., User models for culture-aware music recommendation: Fusing acoustic and cultural cues, Trans. Int. Soc. Music Inf. Retr. 3 (1) (2020) 1–16.
[110]
Schedl M., Bauer C., Reisinger W., Kowald D., Lex E., Listener modeling and context-aware music recommendation based on country archetypes, Front. Artif. Intell. 3 (2021) 108.
[111]
S. Miller, P. Reimer, S.R. Ness, G. Tzanetakis, Geoshuffle: Location-Aware, Content-based Music Browsing Using Self-organizing Tag Clouds, in: Proc. ISMIR, Utrecht, the Netherlands, 2010, pp. 237–242.
[112]
Chen S., Moore J.L., Turnbull D., Joachims T., Playlist prediction via metric embedding, in: Proc. KDD, ACM, Beijing, China, 2012, pp. 714–722.
[113]
Jannach D., Lerche L., Kamehkhosh I., Beyond “hitting the hits”: Generating coherent music playlist continuations with the right tracks, in: Proc. RecSys, ACM, Vienna, Austria, 2015, pp. 187–194.
[114]
I. Kamehkhosh, D. Jannach, L. Lerche, Personalized Next-Track Music Recommendation with Multi-dimensional Long-Term Preference Signals, in: Proc. UMAP, Halifax, Canada, 2016.
[115]
Pereira B.L., Ueda A., Penha G., Santos R.L.T., Ziviani N., Online learning to rank for sequential music recommendation, in: Proc. RecSys, ACM, Copenhagen, Denmark, 2019, pp. 237–245.
[116]
Chaves P.D.V., Pereira B.L., Santos R.L.T., Efficient online learning to rank for sequential music recommendation, in: WWW ’22: The ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022, ACM, 2022, pp. 2442–2450,.
[117]
Cai R., Zhang C., Zhang L., Ma W.-Y., Scalable music recommendation by search, in: Proc. ACM Multimedia, ACM, Augsburg, Germany, 2007, pp. 1065–1074.
[118]
Knees P., Pohle T., Schedl M., Widmer G., Combining audio-based similarity with web-based data to accelerate automatic music playlist generation, in: Proc. MIR, ACM, Santa Barbara, CA, USA, 2006, pp. 147–154.
[119]
Yoshii K., Goto M., Komatani K., Ogata T., Okuno H.G., An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model, IEEE Trans. Audio, Speech Lang. Process. 16 (2) (2008) 435–447.
[120]
Soleymani M., Aljanaki A., Wiering F., Veltkamp R.C., Content-based music recommendation using underlying music preference structure, in: Proc. ICME, IEEE, Turin, Italy, 2015, pp. 1–6.
[121]
Chou S., Yang L., Yang Y., Jang J.R., Conditional preference nets for user and item cold start problems in music recommendation, in: Proc. ICME, IEEE, Hong Kong, China, 2017, pp. 1147–1152.
[122]
O. Gouvert, T. Oberlin, C. Févotte, Matrix Co-Factorization for Cold-Start Recommendation, in: Proc. ISMIR, Paris, France, 2018, pp. 792–798.
[123]
Pulis M., Bajada J., Siamese neural networks for content-based cold-start music recommendation, in: Pampín H.J.C., Larson M.A., Willemsen M.C., Konstan J.A., McAuley J.J., Garcia-Gathright J., Huurnink B., Oldridge E. (Eds.), RecSys ’21: Fifteenth ACM Conference on Recommender Systems, Amsterdam, the Netherlands, 27 September 2021 - 1 October 2021, ACM, 2021, pp. 719–723,.
[124]
Yürekli A., Kaleli C., Bilge A., Alleviating the cold-start playlist continuation in music recommendation using latent semantic indexing, Int. J. Multim. Inf. Retr. 10 (3) (2021) 185–198,.
[125]
Chen K., Liang B., Ma X., Gu M., Learning audio embeddings with user listening data for content-based music recommendation, in: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2021, Toronto, on, Canada, June 6-11, 2021, IEEE, 2021, pp. 3015–3019,.
[126]
Nanopoulos A., Rafailidis D., Symeonidis P., Manolopoulos Y., MusicBox: Personalized music recommendation based on cubic analysis of social tags, IEEE Trans. Audio, Speech Lang. Process. 18 (2) (2010) 407–412.
[127]
Tintarev N., Rostami S., Smyth B., Knowing the unknown: Visualising consumption blind-spots in recommender systems, in: Proc. SAC, ACM, Pau, France, 2018, pp. 1396–1399.
[128]
Tingle D., Kim Y.E., Turnbull D., Exploring automatic music annotation with “acoustically-objective” tags, in: Proc. ISMIR, ACM, Philadelphia, PA, USA, 2010, pp. 55–62.
[129]
Ebbinghaus H., Memory: A contribution to experimental psychology, Ann. Neurosci. 20 (4) (2013) 155.
[130]
Aucouturier J.-J., Pachet F., Improving timbre similarity: How high’s the sky?, J. Negat. Results Speech Audio Sci. (2004).
[131]
A. Flexer, D. Schnitzer, J. Schlueter, A MIREX Meta-analysis of Hubness in Audio Music Similarity, in: Proc. ISMIR, Porto, Portugal, 2012, pp. 175–180.
[132]
M.I. Mandel, SVM-based Audio Classification, Tagging, and Similarity Submission, in: Extended Abstract to the Annual Music Information Retrieval Evaluation EXchange (MIREX), Utrecht, the Netherlands, 2010.
[133]
G. Tzanetakis, Marsyas Submissions to MIREX 2010, in: Extended Abstract to the Annual Music Information Retrieval Evaluation EXchange (MIREX), Utrecht, the Netherlands, 2010.
[134]
K. Seyerlehner, G. Widmer, T. Pohle, Fusing Block-Level Features for Music Similarity Estimation, in: Proc. DAFx, Graz, Austria, 2010.
[135]
Friedrich G., Zanker M., A taxonomy for generating explanations in recommender systems, AI Mag. 32 (3) (2011) 90–98.
[136]
Ribeiro M.T., Singh S., Guestrin C., “Why should I trust you?”, in: Proc. KDD, ACM, San Francisco, CA, USA, 2016, pp. 1135–1144.
[137]
Balog K., Radlinski F., Measuring recommendation explanation quality: The conflicting goals of explanations, in: Proc. SIGIR, ACM, Virtual, 2020, pp. 329–338.
[138]
B. McFee, G. Lanckriet, Large-scale Music Similarity Search with Spatial Trees, in: Proc. ISMIR, Miami, FL, USA, 2011, pp. 55–60.
[139]
Haunschmid V., Manilow E., Widmer G., Audiolime: Listenable explanations using source separation, 2020, CoRR abs/2008.00582.
[140]
Koch G., Zemel R., Salakhutdinov R., et al., Siamese neural networks for one-shot image recognition, in: ICML Deep Learning Workshop, Vol. 2, Lille, 2015.
[141]
Cacioppo J.T., Petty R.E., Kao C.F., The efficient assessment of need for cognition, J. Personal. Assess. 48 (3) (1984) 306–307,. PMID: 16367530.
[142]
Müllensiefen D., Gingras B., Musil J., Stewart L., The musicality of non-musicians: An index for assessing musical sophistication in the general population, PLOS ONE 9 (2) (2014) 1–23,.
[143]
McCrae R.R., John O.P., An introduction to the five-factor model and its applications, J. Pers. 60 (2) (1992) 175–215,. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-6494.1992.tb00970.x, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-6494.1992.tb00970.x.
[144]
Lozano Murciego Á., Jiménez-Bravo D.M., Valera Román A., De Paz Santana J.F., Moreno-García M.N., Context-aware recommender systems in the music domain: A systematic literature review, Electronics 10 (13) (2021) 1555.
[145]
Bauer C., Novotny A., A consolidated view of context for intelligent systems, J. Ambient Intell. Smart Environ. 9 (4) (2017) 377–393.
[146]
Schilit B., Adams N., Want R., Context-aware computing applications, in: Proc. WMCSA, IEEE, 1994, pp. 85–90.
[147]
Abowd G.D., Dey A.K., Brown P.J., Davies N., Smith M., Steggles P., Towards a better understanding of context and context-awareness, in: Int’L Symp. on Handheld and Ubiquitous Comp., Springer, 1999, pp. 304–307.
[148]
Aggarwal C.C., Context-sensitive recommender systems, in: Recommender Systems, Springer, 2016, pp. 255–281.
[149]
Braunhofer M., Kaminskas M., Ricci F., Location-aware music recommendation, Int. J. Multimedia Inf. Retr. 2 (1) (2013) 31–44.
[150]
M. Schedl, Leveraging Microblogs for Spatiotemporal Music Information Retrieval, in: Proc. ECIR, Moscow, Russia, 2013, pp. 796–799.
[151]
M. Züger, T. Fritz, Interruptibility of software developers and its prediction using psycho-physiological sensors, in: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 2015, pp. 2981–2990.
[152]
Rentfrow P.J., Goldberg L.R., Levitin D.J., The structure of musical preferences: A five-factor model, J. Personal. Soc. Psychol. 100 (6) (2011) 1139–1157.
[153]
Eerola T., Vuoskoski J.K., A comparison of the discrete and dimensional models of emotion in music, Psychol. Music 39 (1) (2011) 18–49.
[154]
Ferwerda B., Tkalcic M., Schedl M., Personality traits and music genres: What do people prefer to listen to?, in: Proc. UMAP, ACM, Bratislava, Slovakia, 2017, pp. 285–288.
[155]
Yang Y., Chen H.H., Machine recognition of music emotion: A review, ACM Trans. Intell. Syst. Technol. 3 (3) (2012) 40:1–40:30.
[156]
Thayer R.E., The Biopsychology of Mood and Arousal, Oxford University Press, 1990.
[157]
Choi K., Fazekas G., Sandler M., Automatic tagging using deep convolutional neural networks, 2016, arXiv preprint arXiv:1606.00298.
[158]
Pons J., Serra X., Musicnn: Pre-trained convolutional neural networks for music audio tagging, 2019, arXiv preprint arXiv:1909.06654.
[159]
Cai R., Zhang C., Wang C., Zhang L., Ma W.-Y., MusicSense: ic recommendation using emotional allocation modeling, in: Proc. ACM Multimedia, ACM, Augsburg, Germany, 2007, pp. 553–556.
[160]
M.M. Bradley, P.J. Lang, Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings, Tech. rep., 1999.
[161]
Cantador I., Brusilovsky P., Kuflik T., 2Nd workshop on information heterogeneity and fusion in recommender systems (HetRec 2011), in: Proc. RecSys, ACM, Chicago, IL, USA, 2011.
[162]
Schedl M., The LFM-1b dataset for music retrieval and recommendation, in: Proc. ICMR, ACM, New York, NY, USA, 2016, pp. 103–110.
[163]
J.L. Moore, S. Chen, T. Joachims, D. Turnbull, Learning to Embed Songs and Tags for Playlist Prediction, in: Proc. ISMIR, Porto, Portugal, 2012, pp. 349–354.
[164]
Chen S., Xu J., Joachims T., Multi-space probabilistic sequence modeling, in: Proc. KDD, ACM, 2013, pp. 865–873.
[165]
Wu X., Liu Q., Chen E., He L., Lv J., Cao C., Hu G., Personalized next-song recommendation in online karaokes, in: Proc. RecSys, ACM, Hong Kong, China, 2013, pp. 137–140.
[166]
He Q., Jiang D., Liao Z., Hoi S.C.H., Chang K., Lim E.-P., Li H., Web query recommendation via sequential query prediction, in: Proc. ICDE, IEEE, Shanghai, China, 2009, pp. 1443–1454.
[167]
Hosseinzadeh Aghdam M., Hariri N., Mobasher B., Burke R., Adapting recommendations to contextual changes using hierarchical hidden Markov models, in: Proc. RecSys, ACM, Vienna, Austria, 2015, pp. 241–244.
[168]
S. Rendle, C. Freudenthaler, L. Schmidt-Thieme, Factorizing Personalized Markov Chains for Next-basket Recommendation, in: Proc. WWW, Raleigh, NC, USA, 2010, pp. 811–820.
[169]
Li T., Choi M., Fu K., Lin L., Music sequence prediction with mixture hidden Markov models, in: Proc. Big Data, IEEE, 2019, pp. 6128–6132.
[170]
Eskandanian F., Mobasher B., Detecting changes in user preferences using hidden Markov models for sequential recommendation tasks, 2018, arXiv preprint 1810.00272.
[171]
Quadrana M., Karatzoglou A., Hidasi B., Cremonesi P., Personalizing session-based recommendations with hierarchical recurrent neural networks, in: Proc. RecSys, ACM, Como, Italy, 2017, pp. 130–137.
[172]
Aggarwal C.C., Evaluating recommender systems, in: Recommender Systems, Springer, 2016, pp. 225–254.
[173]
Shani G., Gunawardana A., Evaluating recommendation systems, in: Recommender Systems Handbook, 2011, pp. 257–297.
[174]
Wilk S., Schreiber D., Stohr D., Effelsberg W., On the effectiveness of video prefetching relying on recommender systems for mobile devices, in: Proc. CCNC, IEEE, 2016, pp. 429–434.
[175]
Wilk S., Rückert J., Thräm T., Koch C., Effelsberg W., Hausheer D., The potential of social-aware multimedia prefetching on mobile devices, in: Proc. NetSys, IEEE, 2015, pp. 1–5.
[176]
Lartillot O., Toiviainen P., Eerola T., A matlab toolbox for music information retrieval, in: Data Analysis, Machine Learning and Applications, Springer, 2008, pp. 261–268.
[177]
Hofmann T., Probabilistic latent semantic analysis, in: Proc. UAI, Morgan Kaufmann, Stockholm, Sweden, 1999, pp. 289–296.
[178]
Rashid A.M., Karypis G., Riedl J., Learning preferences of new users in recommender systems: an information theoretic approach, SIGKDD Explor. 10 (2) (2008) 90–100.
[179]
Sánchez-Moreno D., Murciego Á.L., Batista V.F.L., Vicente M.D.M., Moreno-García M.N., Dynamic inference of user context through social tag embedding for music recommendation, in: 15th ACM Conference on Recommender Systems-Workshop on Context-Aware Recommender Systems (RECSYS 2021-CARS), 2021.
[180]
Sánchez-Moreno D., Moreno-García M.N., Sonboli N., Mobasher B., Burke R., Using social tag embedding in a collaborative filtering approach for recommender systems, in: 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), IEEE, 2020, pp. 502–507.
[181]
Yang D., Chen L., Liang J., Xiao Y., Wang W., Social tag embedding for the recommendation with sparse user-item interactions, in: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM, IEEE, 2018, pp. 127–134.
[182]
Xu Z., Lukasiewicz T., Chen C., Miao Y., Meng X., Tag-aware personalized recommendation using a hybrid deep model, in: AAAI Press/International Joint Conferences on Artificial Intelligence, 2017.
[183]
A. Vall, M. Skowron, P. Knees, M. Schedl, Improving Music Recommendations with a Weighted Factorization of the Tagging Activity, in: Proceedings of the 16th International Society for Music Information Retrieval Conference (ISMIR), 2015, pp. 65–71, https://doi.org/10.5281/zenodo.1416802.
[184]
Lex E., Kowald D., Seitlinger P., Tran T.N.T., Felfernig A., Schedl M., Psychology-informed recommender systems, Found. Trends Inf. Retr. (2021).
[185]
Deldjoo Y., Bellogin A., Di Noia T., Explaining recommender systems fairness and accuracy through the lens of data characteristics, Inf. Process. Manage. 58 (5) (2021).
[186]
Deldjoo Y., Anelli V.W., Zamani H., Bellogin A., Di Noia T., Recommender systems fairness evaluation via generalized cross entropy, in: RMSE@RecSys’19 Workshop on Recommendation in Multistakeholder Environments, 2019.
[187]
Ekstrand M.D., Das A., Burke R., Diaz F., Fairness in recommender systems, in: Recommender Systems Handbook, third Edition, Springer, 2021.
[188]
Deldjoo Y., Jannach D., Bellogin A., Difonzo A., Zanzonelli D., Fairness in recommender systems: research landscape and future directions, User Modeling and User-Adapted Interaction (2023) 1–50.
[189]
A. Ferraro, X. Serra, C. Bauer, Break the loop: Gender imbalance in music recommenders, in: Proceedings of the 2021 Conference on Human Information Interaction and Retrieval, 2021, pp. 249–254.
[190]
Zhou C., Jin Y., Zhang K., Yuan J., Li S., Wang X., MusicRoBot: Towards conversational context-aware music recommender system, in: International Conference on Database Systems for Advanced Applications, Springer, 2018, pp. 817–820.
[191]
Y. Deldjoo, J.R. Trippas, H. Zamani, Towards multi-modal conversational information seeking, in: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021.

Cited By

View all
  • (2024)A Survey of Music Recommendation SystemsProceedings of the 5th International Conference on Computer Information and Big Data Applications10.1145/3671151.3671243(507-519)Online publication date: 26-Apr-2024
  • (2024)Unmasking Privacy: A Reproduction and Evaluation Study of Obfuscation-based Perturbation Techniques for Collaborative FilteringProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657858(1753-1762)Online publication date: 10-Jul-2024
  • (2024)A Dynamic Collaborative Recommendation Method Based on Multimodal FusionAdvanced Intelligent Computing Technology and Applications10.1007/978-981-97-5663-6_1(3-14)Online publication date: 5-Aug-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computer Science Review
Computer Science Review  Volume 51, Issue C
Feb 2024
216 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 25 June 2024

Author Tags

  1. Content-based
  2. Music
  3. Recommender Systems
  4. Onion model

Qualifiers

  • Review-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A Survey of Music Recommendation SystemsProceedings of the 5th International Conference on Computer Information and Big Data Applications10.1145/3671151.3671243(507-519)Online publication date: 26-Apr-2024
  • (2024)Unmasking Privacy: A Reproduction and Evaluation Study of Obfuscation-based Perturbation Techniques for Collaborative FilteringProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657858(1753-1762)Online publication date: 10-Jul-2024
  • (2024)A Dynamic Collaborative Recommendation Method Based on Multimodal FusionAdvanced Intelligent Computing Technology and Applications10.1007/978-981-97-5663-6_1(3-14)Online publication date: 5-Aug-2024
  • (2024)Users’ Preference-Aware Music Recommendation with Contrastive LearningAdvanced Intelligent Computing Technology and Applications10.1007/978-981-97-5615-5_25(309-320)Online publication date: 5-Aug-2024

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media