Nothing Special   »   [go: up one dir, main page]

skip to main content
review-article

Leveraging Deep Learning and IoT big data analytics to support the smart cities development: : Review and future directions

Published: 01 November 2020 Publication History

Abstract

The rapid growth of urban populations worldwide imposes new challenges on citizens’ daily lives, including environmental pollution, public security, road congestion, etc. New technologies have been developed to manage this rapid growth by developing smarter cities. Integrating the Internet of Things (IoT) in citizens’ lives enables the innovation of new intelligent services and applications that serve sectors around the city, including healthcare, surveillance, agriculture, etc. IoT devices and sensors generate large amounts of data that can be analyzed to gain valuable information and insights that help to enhance citizens’ quality of life. Deep Learning (DL), a new area of Artificial Intelligence (AI), has recently demonstrated the potential for increasing the efficiency and performance of IoT big data analytics. In this survey, we provide a review of the literature regarding the use of IoT and DL to develop smart cities. We begin by defining the IoT and listing the characteristics of IoT-generated big data. Then, we present the different computing infrastructures used for IoT big data analytics, which include cloud, fog, and edge computing. After that, we survey popular DL models and review the recent research that employs both IoT and DL to develop smart applications and services for smart cities. Finally, we outline the current challenges and issues faced during the development of smart city services.

References

[1]
United Nation, 68% of the world population projected to live in urban areas by 2050, 2018, https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html. (Accessed 6 March 2020).
[2]
Abaker I., Hashem T., Chang V., Anuar N.B., Adewole K., Yaqoob I., Gani A., Ahmed E., Chiroma H., The role of big data in smart city, Int. J. Inf. Manage. 36 (2016) 748–758. https://www.sciencedirect.com/science/article/pii/S0268401216302778. (Accessed 11 February 2020).
[3]
Statista, Smart city initiatives: global spending 2023, 2020, https://www.statista.com/. (Accessed 18 April 2020).
[4]
Al-Fuqaha A., Guizani M., Mohammadi M., Aledhari M., Ayyash M., Internet of Things: A survey on enabling technologies, protocols, and applications, IEEE Commun. Surv. Tutor. 17 (2015) 2347–2376,.
[6]
Chen M., Mao S., Zhang Y., Leung V.C.M., Big data: related technologies, challenges and future prospects, 2014, http://www.springer.com/series/10028. (Accessed 2 February 2020).
[8]
Marjani M., Nasaruddin F., Gani A., Karim A., Hashem I.A.T., Siddiqa A., Yaqoob I., Big IoT data analytics: Architecture, opportunities, and open research challenges, IEEE Access 5 (2017) 5247–5261,.
[9]
Yassine A., Singh S., Hossain M.S., Muhammad G., IoT Big data analytics for smart homes with fog and cloud computing, Future Gener. Comput. Syst. 91 (2019) 563–573,.
[10]
Boulila W., A top-down approach for semantic segmentation of big remote sensing images, Earth Sci. Inf. 12 (2019) 295–306,.
[11]
Bengio Y., Goodfellow I., Courville A., Deep Learning, 2015.
[12]
M. Mohammadi G., Al-Fuqaha A., Enabling cognitive smart cities using big data and machine learning: Approaches and challenges, IEEE Commun. Mag. 56 (2018) 94–101. http://www.havenondemand.com. (Accessed 2 February 2020).
[13]
Rathore M.M., Paul A., Ahmad A., Rho S., Urban planning and building smart cities based on the internet of things using big data analytics, Comput. Netw. 101 (2016) 63–80,.
[14]
Khatoun R., Zeadally S., Smart cities: concepts, architectures, research opportunities, Commun. ACM 59 (2016) 46–57,.
[15]
Mohammadi M., Al-Fuqaha A., Sorour S., Guizani M., Deep learning for IoT big data and streaming analytics: A survey, IEEE Commun. Surv. Tutor. 20 (2018) 2923–2960. http://arxiv.org/abs/1712.04301.
[16]
Mahdavinejad M.S., Rezvan M., Barekatain M., Adibi P., Barnaghi P., Sheth A.P., Machine learning for internet of things data analysis: A survey, Digit. Commun. Netw. 4 (2018) 161–175. https://www.sciencedirect.com/science/article/pii/S235286481730247X. (Accessed 1 February 2020).
[17]
Zhang C., Patras P., Haddadi H., Deep learning in mobile and wireless networking: A survey, IEEE Commun. Surv. Tutor. (2018) http://arxiv.org/abs/1803.04311.
[18]
Zhang Q., Yang L.T., Chen Z., Li P., A survey on deep learning for big data, Inf. Fusion 42 (2018) 146–157,.
[19]
Qolomany B., Al-Fuqaha A., Gupta A., Benhaddou D., Alwajidi S., Qadir J., Fong A.C., Leveraging machine learning and big data for smart buildings: A comprehensive survey, IEEE Access 7 (2019) 90316–90356. https://ieeexplore.ieee.org/abstract/document/8754678/. (Accessed 1 February 2020).
[20]
Chen Q., Wang W., Wu F., De S., Wang R., Zhang B., Huang X., A survey on an emerging area: Deep learning for smart city data, IEEE Trans. Emerg. Top. Comput. Intell. 3 (2019) 392–410. https://ieeexplore.ieee.org/abstract/document/8704334/. (Accessed 21 February 2020).
[21]
Whitmore A., Agarwal A., da Xu L., The internet of things—A survey of topics and trends, Inf. Syst. Front. 17 (2015) 261–274,.
[22]
Gubbi J., Buyya R., Marusic S., Palaniswami M., Internet of things (IoT): A vision, architectural elements, and future directions, Future Gener. Comput. Syst. 29 (2013) 1645–1660,.
[23]
Mukhopadhyay S., Wearable sensors for human activity monitoring: A review, IEEE Sensors J. 15 (2015) 1321–1330,.
[24]
Ahmed E., Yaqoob I., Hashem I.A.T., Khan I., Ahmed A.I.A., Imran M., v. Vasilakos A., The role of big data analytics in Internet of Things, Comput. Netw. 129 (2017),.
[25]
Types of analytics: descriptive, predictive, prescriptive analytics, 2020, https://www.dezyre.com/article/types-of-analytics-descriptive-predictive-prescriptive-analytics/209. (Accessed 1 February 2020).
[26]
Ahmed E., Yaqoob I., Abaker I., Hashem T., Khan I., Ibrahim A., Ahmed A., Imran M., v Vasilakos A., Ibrahim A.-M., The role of big data analytics in Internet of Things, Comput. Netw. (2017) 459–471,.
[27]
Abbasi A., Li W., Benjamin V., Hu S., Chen H., Descriptive analytics: Examining expert hackers in web forums, in: 2014 IEEE Joint Intelligence and Security Informatics Conference, 2014, pp. 56–63,.
[28]
Waller M.A., Fawcett S.E., Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management, data science, 2013, pp. 77–84. http://www-01.ibm.com/software/data/bigdata/.
[29]
Bertsimas D., Kallus N., From predictive to prescriptive analytics, Manage. Sci. (2019),.
[30]
Boulila W., Farah I.R., Hussain A., A novel decision support system for the interpretation of remote sensing big data, Earth Sci. Inform. 11 (2018) 31–45,.
[31]
Boulila W., Chebbi I., Farah I.R., Big data: Concepts, challenges and applications, in: Computational Collective Intelligence, Springer, 2015, pp. 638–647,.
[32]
Chebbi I., Boulila W., Mellouli N., Lamolle M., Farah I.R., A comparison of big remote sensing data processing with hadoop mapreduce and spark, in: 2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 2018, pp. 1–4,.
[33]
Singh D., Reddy C.K., A survey on platforms for big data analytics, J. Big Data 2 (2015),.
[34]
Ali A.H., Abdullah M.Z., A survey on vertical and horizontal scaling platforms for big data analytics, Int. J. Integr. Eng. 11 (2019) 138–150,.
[35]
Stergiou C., Psannis K.E., Kim B.-G., Gupta B., Secure integration of Internet-of-Things and cloud computing, Future Gener. Comput. Syst. 78 (2018) 964–975,.
[36]
Botta A., de Donato W., Persico V., Pescapé A., Integration of cloud computing and Internet of Things: A survey, Future Gener. Comput. Syst. 56 (2016) 684–700,.
[37]
Kumar R., Goyal R., On cloud security requirements, threats, vulnerabilities and countermeasures: A survey, Comput. Sci. Rev. 33 (2019) 1–48,.
[38]
Chen J., Ran X., Deep learning with edge computing: A review, Proc. IEEE 107 (2019) 1655–1674,.
[39]
Mukherjee M., Shu L., Wang D., Survey of fog computing: Fundamental, network applications, and research challenges, IEEE Commun. Surv. Tutor. 20 (2018) 1826–1857. https://ieeexplore.ieee.org/abstract/document/8314121/. (Accessed 1 February 2020).
[40]
Bonomi F., Milito R., Zhu J., Addepalli S., Fog computing and its role in the Internet of Things, in: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, 2012, pp. 13–16,.
[41]
Bonomi F., Milito R., Natarajan P., Zhu J., Fog computing: A platform for internet of things and analytics, Stud. Comput. Intell. 546 (2014) 169–186,.
[42]
Vaquero L.M., Rodero-Merino L., Finding your way in the fog: Towards a comprehensive definition of fog computing, Comput. Commun. Rev. Assoc. Comput. Mach. (2014) 27–32,.
[43]
Yu W., Liang F., He X., Hatcher W.G., Lu C., Lin J., Yang X., A survey on the edge computing for the Internet of Things, IEEE Access 6 (2017) 6900–6919. https://ieeexplore.ieee.org/abstract/document/8123913/. (Accessed 1 February 2020).
[44]
Wang X., Han Y., Leung V.C.M., Niyato D., Yan X., Chen X., Convergence of edge computing and deep learning: A comprehensive survey, 2020,.
[45]
Shi W., Cao J., Zhang Q., Li Y., Xu L., Edge computing: Vision and challenges, IEEE Internet Things J. 3 (2016),.
[46]
Qiu J., Wu Q., Ding G., Xu Y., Feng S., A survey of machine learning for big data processing, Eurasip J. Adv. Signal Process. (2016),.
[47]
Mitchell R., Michalski J., Carbonell T., An artificial intelligence approach, 2013, https://link.springer.com/content/pdf/10.1007/978-3-662-12405-5.pdf. (Accessed 2 February 2020).
[48]
LeCun Y., Bengio Y., Hinton G., Deep learning, Nature (2015) 436–444,.
[49]
Chen X.-W., Lin X., Big data deep learning: challenges and perspectives, IEEE Access 2 (2014) 514–525. https://ieeexplore.ieee.org/abstract/document/6817512/. (Accessed 2 February 2020).
[50]
Shokri R., Shmatikov V., Privacy-preserving deep learning, in: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, 2015, pp. 1310–1321,.
[51]
Li H., Ota K., Dong M., Learning IoT in edge: Deep learning for the internet of things with edge computing, IEEE Netw. 32 (2018) 96–101,.
[52]
Brynjolfsson E., Mcafee A., The business of artificial intelligence, Harvard Bus. Rev. (2017) 1–20. https://hbr.org/cover-story/2017/07/the-business-of-artificial-intelligence. (Accessed 17 April 2020).
[53]
James G., Witten D., Hastie T., Tibshirani R., Unsupervised Learning, 2013, pp. 373–418,.
[54]
Hastie T., Tibshirani R., learning J.F., Unsupervised learning, Elements Stat. Learn. (2009) 485–585. https://link.springer.com/content/pdf/10.1007/978-0-387-84858-7_14.pdf. (Accessed 1 February 2020).
[55]
Kingma D.P., Rezende D.J., Mohamed S., Welling M., Semi-supervised learning with deep generative models, in: Advances in Neural Information Processing Systems, 2014, pp. 3581–3589. http://arxiv.org/abs/1406.5298. (Accessed February 15, 2020).
[56]
van Hasselt H., Guez A., Silver D., Deep reinforcement learning with double q-learning, 2016, www.aaai.org (Accessed 1 February 2020).
[57]
van Hasselt H., Guez A., Silver D., Deep reinforcement learning with double q-learning, in: Thirtieth AAAI Conference on Artificial Intelligence, 2016, www.aaai.org (Accessed 3 February 2020).
[58]
Deng L., A tutorial survey of architectures, algorithms, and applications for deep learning, APSIPA Trans. Signal Inf. Process. 3 (2014),.
[59]
Al-Sarem M., Boulila W., Al-Harby M., Qadir J., Alsaeedi A., Deep learning-based rumor detection on microblogging platforms: A systematic review, IEEE Access 7 (2019) 152788–152812. https://ieeexplore.ieee.org/abstract/document/8871102/. (Accessed 17 April 2020).
[60]
Gu J., Wang Z., Kuen J., Ma L., Shahroudy A., Shuai B., Liu T., Wang X., Wang L., Wang G., Cai J., Chen T., Recent advances in convolutional neural networks, Pattern Recognit. (2018) 354–377. https://www.sciencedirect.com/science/article/pii/S0031320317304120. (Accessed 5 March 2020).
[61]
Ca H.L., Mandel M., Pascanu R., Bengio Y., Ca B.U., Learning Algorithms for the Classification Restricted Boltzmann Machine Hugo Larochelle, 2012.
[62]
il Suk H., Lee S.W., Shen D., Latent feature representation with stacked auto-encoder for AD/MCI diagnosis, Brain Struct. Funct. 220 (2015) 841–859,.
[63]
Gu J., Wang Z., Kuen J., Ma L., Shahroudy A., Shuai B., Liu T., Wang X., Wang L., Wang G., Cai J., Chen T., Recent advances in convolutional neural networks, Pattern Recognit. 77 (2018) 354–377.
[64]
Goodfellow I., Bengio Y., Courville A., Deep Learning, MIT Press, 2016.
[65]
Werbos P.J., Backpropagation through time: what it does and how to do it, Proc. IEEE. 78 (1990) 1550–1560. https://ieeexplore.ieee.org/abstract/document/58337/. (Accessed 3 April 2020).
[66]
Hochreiter S., The vanishing gradient problem during learning recurrent neural nets and problem solutions, Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 6 (1998) 107–116,.
[67]
Cummins F., Gers F.A., Urgen Schmidhuber J.J., Learning to forget: Continual prediction with LSTM, 1999,.
[68]
Olah C., Understanding LSTM networks, 2015, https://colah.github.io/posts/2015-08-Understanding-LSTMs/. (Accessed 4 February 2020).
[69]
Hinton G.E., Osindero S., Teh Y.W., A fast learning algorithm for deep belief nets, Neural Comput. 18 (2006) 1527–1554,.
[70]
Bengio Y., Lamblin P., Popovici D., Larochelle H., Greedy layer-wise training of deep networks, Adv. Neural Inf. Process. Syst. (2007) 153–160.
[71]
Hinton G.E., A practical guide to training restricted Boltzmann machines, in: Neural Networks: Tricks of the Trade, 2012, pp. 599–619,.
[72]
le Roux N., Bengio Y., Representational power of restricted boltzmann machines and deep belief networks, Neural Comput. 20 (2008) 1631–1649,.
[73]
Goodfellow I.J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y., Generative adversarial nets, in: Advances in Neural Information Processing Systems, 2014, pp. 2672–2680. http://www.github.com/goodfeli/adversarial. (Accessed 5 February 2020).
[74]
B. Dai, S. Fidler, R. Urtasun, D. Lin, Towards diverse and natural image descriptions via a conditional GAN, in: IEEE International Conference on Computer Vision, 2017, pp. 2970–2979.
[75]
C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, W. Shi Twitter, Photo-realistic single image super-resolution using a generative adversarial network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4681–4690.
[76]
Y. Li, S. Liu, J. Yang, M.-H. Yang, Generative face completion, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3911–3919.
[77]
J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, S. Yan, Perceptual generative adversarial networks for small object detection, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1222–1230.
[78]
Arulkumaran K., Deisenroth M.P., Brundage M., Bharath A.A., Deep reinforcement learning: A brief survey, IEEE Signal Process. Mag. 34 (2017) 26–38,.
[79]
Zhao L., Wang J., Liu J., Routing for crowd management in smart cities: A deep reinforcement learning perspective, IEEE Commun. Mag. 4 (2019) 88–93. https://ieeexplore.ieee.org/abstract/document/8703471/. (Accessed 5 February 2020).
[80]
Liu Y., Logan B., Liu N., Xu Z., Deep reinforcement learning for dynamic treatment regimes on medical registry data, in: 2017 IEEE International Conference on Healthcare Informatics (ICHI), 2017, pp. 380–385. https://ieeexplore.ieee.org/abstract/document/8031178/. (Accessed 5 February 2020).
[81]
Nguyen G., et al., Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey, Artifi. Intell. Rev. 52 (2019) 77–124,.
[82]
Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., Corrado G.S., Davis A., Dean J., Devin M., Ghemawat S., Goodfellow I., Harp A., Irving G., Isard M., Jia Y., Jozefowicz R., Kaiser L., Kudlur M., Levenberg J., Mané D., Monga R., Moore S., Murray D., Olah C., Schuster M., Shlens J., Steiner B., Sutskever I., Talwar K., Tucker P., Vanhoucke V., Vasudevan V., Viégas F., Vinyals O., Warden P., Wattenberg M., Wicke M., Yu Y., Zheng X., Research G., Tensorflow: Large-scale machine learning on heterogeneous distributed systems, 2016, Arxiv.Org. www.tensorflow.org. (Accessed 2 March 2020).
[83]
Collobert R., Kavukcuoglu K., Farabet C., Torch7: A matlab-like environment for machine learning, in: BigLearn, NIPS Workshop, 2011, http://numpy.scipy.org. (Accessed 2 March 2020).
[84]
Bastien F., Lamblin P., Pascanu R., Bergstra J., Goodfellow I., Bergeron A., Bouchard N., Warde-Farley D., Bengio Y., Theano: new features and speed improvements, 2012, ArXiv Preprint arXiv:1211.5590, (Accessed 2 March 2020).
[85]
Jia Y., Shelhamer E., Donahue J., Karayev S., Long J., Girshick R., Guadarrama S., Darrell T., Caffe: Convolutional architecture for fast feature embedding, in: MM 2014 - Proceedings of the 2014 ACM Conference on Multimedia, Association for Computing Machinery, Inc, 2014, pp. 675–678,.
[86]
Chollet F., Keras, 2015, https://github.com/keras-team/keras. (Accessed 18 April 2020).
[87]
Vedaldi A., Lenc K., Matconvnet: Convolutional neural networks for MATLAB, in: MM 2015 - Proceedings of the 2015 ACM Multimedia Conference, Association for Computing Machinery, Inc, 2015, pp. 689–692,.
[88]
Deeplearning4j, (n.d.). https://deeplearning4j.org/. (Accessed 18 April 2020).
[89]
MXNet, 2020, https://mxnet.apache.org/. (Accessed 18 April 2020).
[90]
Tokui S., Oono K., Hido S., Clayton J., Chainer: a next-generation open source framework for deep learning, in: Proceedings of Workshop on Machine Learning Systems (LearningSys) in the Twenty-Ninth Annual Conference on Neural Information Processing Systems (NIPS), 2015, pp. 1–6. http://learningsys.org/papers/LearningSys_2015_paper_33.pdf. (Accessed 21 April 2020).
[91]
Chainer: A flexible framework for neural networks, 2020, https://chainer.org/. (Accessed 21 April 2020).
[92]
Piatetsky Gregory, Python leads the 11 top data science, machine learning platforms: Trends and analysis, 2020, https://www.kdnuggets.com/2019/05/poll-top-data-science-machine-learning-platforms.html. (Accessed 26 April 2020).
[93]
Häni N., Roy P., Isler V., A comparative study of fruit detection and counting methods for yield mapping in apple orchards, J. Field Robot. (2019) https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21902. (Accessed 18 February 2020).
[94]
Yang Cai B., Alvarez R., Sit M., Duarte F., Ratti C., Deep learning-based video system for accurate and real-time parking measurement, IEEE Internet of Things J. (2019) 7693–7701. https://qcode.us/codes/. (Accessed 17 February 2020).
[95]
Moosavi S., Samavatian M.H., Parthasarathy S., Teodorescu R., Ramnath R., Accident risk prediction based on heterogeneous sparse data: New dataset and insights, in: The 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM, 2019, pp. 33–42,.
[96]
Torti E., Fontanella A., Musci M., Blago N., Pau D., Leporati F., Piastra M., Embedded real-time fall detection with deep learning on wearable devices, in: 2018 21st Euromicro Conference on Digital System Design (DSD), 2018, pp. 405–412,.
[97]
Singh U., Chouhan S., Jain S., Access S.J.-I., undefined D., Multilayer convolution neural network for the classification of mango leaves infected by anthracnose disease, IEEE Access 7 (2019) (2019) 43721–43729. https://ieeexplore.ieee.org/abstract/document/8675730/. (Accessed February 18, 2020).
[98]
Athira V., Geetha P., science R.V., Deepairnet: Applying recurrent networks for air quality prediction, Procedia Comput. Sci. (2018) 1394–1403. https://www.sciencedirect.com/science/article/pii/S1877050918308007. (Accessed 5 February 2020).
[99]
Lane N.D., Bhattacharya S., Georgiev P., Forlivesi C., Kawsar F., An early resource characterization of deep learning on wearables, smartphones and internet-of-things devices, in: Proceedings of the 2015 International Workshop on Internet of Things Towards Applications, Association for Computing Machinery, Inc, 2015, pp. 7–12,.
[100]
Maragatham G., Devi S., LSTM Model for prediction of heart failure in big data, J. Med. Syst. 43 (2019),.
[101]
.C. R P., Roberto Pereira D., Paulo Papa J., de Rosa G.H., Pereira C.R., Pereira D.R., Papa J.P., Rosa G.H., Yang X.-S., Convolutional neural networks applied for parkinson’s disease identification, Mach. Learn. Health Inf. (2016) 377–390,.
[102]
Liu C., Cao Y., Luo Y., Chen G., Vokkarane V., Yunsheng M., Chen S., Hou P., A new deep learning-based food recognition system for dietary assessment on an edge computing service infrastructure, IEEE Trans. Serv. Comput. 11 (2017) 249–261. https://ieeexplore.ieee.org/abstract/document/7837725/. (Accessed 5 February 2020).
[103]
Liu C., Cao Y., Luo Y., Chen G., Vokkarane V., Ma Y., Deepfood: Deep learning-based food image recognition for computer-aided dietary assessment, in: International Conference on Smart Homes and Health Telematics, Springer Verlag, 2016, pp. 37–48,.
[104]
Muhammad K., Ahmad J., Mehmood I., Seungmin R., Sung W.B., Convolutional neural networks based fire detection in surveillance videos, IEEE Access (2018) 18174–18183. https://ieeexplore.ieee.org/abstract/document8307064/. (Accessed 5 February 2020).
[105]
Zhang P., Zhao Q., Gao J., Li W., Urban street cleanliness assessment using mobile edge computing and deep learning, IEEE Access (2019) 63550–63563. https://ieeexplore.ieee.org/abstract/document/8704340/. (Accessed 5 February 2020).
[106]
Yan K., Li W., Ji Z., Qi M., Du Y., A hybrid LSTM neural network for energy consumption forecasting of individual households, IEEE Access (2019) 157633–157642. https://ieeexplore.ieee.org/abstract/document/8880605/. (Accessed 5 February 2020).
[107]
Cisek D., Mahajan M., Dale J., Pepper S., Lin Y., Yoo S., A transfer learning approach to parking lot classification in aerial imagery, in: 2017 New York Scientific Data Summit, NYSDS, 2017, pp. 1–5. https://ieeexplore.ieee.org/abstract/document/8085049/. (Accessed 3 February 2020).
[108]
Shi B., Grimm L., Mazurowski M., Prediction of occult invasive disease in ductal carcinoma in situ using deep learning features, J. Am. Coll. Radiol. (2018) 527–534. https://www.sciencedirect.com/science/article/pii/S1546144017316010. (Accessed 5 February 2020).
[109]
UCI Machine Learning Repository, Individual household electric power consumption Data Set, n.d. https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption. (Accessed 22 April 2020).
[110]
Kelly J., Knottenbelt W., The UK-DALE dataset domestic appliance-level electricity demand and whole-house demand from five UK homes, Sci. Data 2 (2015) 1–14,.
[111]
Sucerquia A., López J.D., Vargas-Bonilla J.F., SisFall: A fall and movement dataset, Sensors 17 (2017),.
[112]
Michal Kępski, UR fall detection dataset, n.d. http://fenix.univ.rzeszow.pl/ mkepski/ds/uf.html. (Accessed 22 April 2020).
[113]
A. Shahroudy, J. Liu, T.-T. Ng, G. Wang, NTU RGB+D: A large scale dataset for 3d human activity analysis, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, n.d., pp. 1010–1019.
[114]
HandPD dataset, n.d. http://wwwp.fc.unesp.br/ papa/pub/datasets/Handpd/. (Accessed 23 April 2020).
[115]
Taxi Service Trajectory dataset, n.d. http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html. (Accessed 23 April 2020).
[116]
CNRPark+EXT dataset, n.d. http://cnrpark.it/. (Accessed 22 April 2020).
[117]
Almeida P., Oliveira L.S., Britto A.S., Silva E.J., Koerich A., PKLot-A robust dataset for parking lot classication, Expert Syst. Appl. 42 (2015) 4937–4949. http://web.inf.ufpr.br/vri/parking-lot-database. (Accessed 22 April 2020).
[118]
Moosavi S., Samavatian M.H., Parthasarathy S., Ramnath R., A countrywide traffic accident dataset, in: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2019, http://arxiv.org/abs/1906.05409. (Accessed 23 April 2020).
[119]
Hughes David P., Salathe M., An open access repository of images on plant health to enable the development of mobile disease diagnostics, 2015, http://arxiv.org/abs/1511.08060. (Accessed 23 April 2020).
[120]
Zhao S., Yuan X., Xiao D., Zhang J., Li Z., AIRNET: A machine learning dataset for air quality forecasting, 2018, http://106.37.208.233:20035. (Accessed 22 April 2020).
[121]
Popa D., Pop F., Serbanescu C., Castiglione A., Deep learning model for home automation and energy reduction in a smart home environment platform, Neural Comput. Appl. 31 (2019) 1317–1337,.
[122]
Rashid R., Chin L., et al., Machine learning for smart energy monitoring of home appliances using IoT, in: 2019 Eleventh International Conference on Ubiquitous and Future Networks, ICUFN, 2019, pp. 66–71. https://ieeexplore.ieee.org/abstract/document/8806026/. (Accessed 5 February 2020).
[123]
Manic M., Amarasinghe K., Rodriguez-Andina J.J., Rieger C., Intelligent buildings of the future: Cyberaware, deep learning powered, and human interacting, IEEE Ind. Electron. Mag. (2016) 32–49. https://ieeexplore.ieee.org/abstract/document/7792825/. (Accessed 5 February 2020).
[124]
Le T., Vo M.T., Vo B., Hwang E., Rho S., Baik S.W., Improving electric energy consumption prediction using CNN and bi-LSTM, Appl. Sci. 9 (2019) 4237,.
[125]
Kim T.-Y., Cho S.-B., Predicting residential energy consumption using CNN-LSTM neural networks, Energy 182 (2019) 72–81. https://www.sciencedirect.com/science/article/pii/S0360544219311223. (Accessed 5 February 2020).
[126]
Aziz Shah S., Ren A., Fan D., Zhang Z., Zhao N., Yang X., Luo M., Wang W., Hu F., Ur Rehman M., Badarneh O.S., Hussain Abbasi Q., Internet of things for sensing: A case study in the healthcare system, Appl. Sci. 8 (2018) 508,.
[128]
P. Feng, M. Yu, S. Mohsen Naqvi, J.A. Chambers, Deep learning for posture analysis in fall detection, in: 2014 19th International Conference on Digital Signal Processing, 2014, pp. 12–17.
[129]
Li X., Pang T., Liu W., Congress T.W., Fall detection for elderly person care using convolutional neural networks, in: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI, 2014, pp. 1–6. https://ieeexplore.ieee.org/abstract/document/8302004/. (Accessed 5 February 2020).
[130]
Santos G.L., Endo P.T., Henrique De Carvalho Monteiro K., Da E., Rocha S., Silva I., Lynn T., Accelerometer-based human fall detection using convolutional neural networks, Sensors (2019) 1644,.
[131]
Adhikari K., Bouchachia H., Nait-Charif H., Deep learning based fall detection using simplified human posture, Int. J. Comput. Syst. Eng. (2019) 255–260. https://pdfs.semanticscholar.org/f953/09544f8bac647b7503ba6c849ccbd9bc8e19.pdf. (Accessed 18 February 2020).
[132]
Mauldin T.R., Canby M.E., Metsis V., Ngu A.H.H., Rivera C.C., Smartfall: A smartwatch-based fall detection system using deep learning, Sensors 18 (2018) 3363,.
[133]
Shojaei-Hashemi A., Nasiopoulos P., Little J.J., Pourazad M.T., Video-based human fall detection in smart homes using deep learning, in: 2018 IEEE International Symposium on Circuits and Systems, ISCAS, 2018, pp. 1–5. https://ieeexplore.ieee.org/abstract/document/8351648/. (Accessed 18 February 2020).
[134]
Nait Aicha A., Englebienne G., van Schooten K.S., Pijnappels M., Kröse B., Deep learning to predict falls in older adults based on daily-life trunk accelerometry, Sensors 18 (2018) 1654,.
[135]
Lu N., Wu Y., Feng L., and J.S., Deep learning for fall detection: Three-dimensional CNN combined with LSTM on video kinematic data, IEEE J. Biomed. Health Inf. 23 (2018) 314–323. https://ieeexplore.ieee.org/abstract/document/8295206/. (Accessed 18 February 2020).
[136]
Wang J., Ding H., Bidgoli F.A., Zhou B., Iribarren C., Molloi S., Baldi P., Detecting cardiovascular disease from mammograms with deep learning, IEEE Trans. Med. Imaging 36 (2017) 1172–1181. https://ieeexplore.ieee.org/abstract/document/7827150/. (Accessed 5 February 2020).
[137]
Latif S., Usman M., Rana R., Qadir J., Phonocardiographic sensing using deep learning for abnormal heartbeat detection, IEEE Sens. J. 18 (2018) 9393–9400,.
[138]
Song X., Kanasugi H., Shibasaki R., Deeptransport: Prediction and simulation of human mobility and transportation mode at a citywide level, in: IJCAI, 2016, pp. 2618–2624.
[139]
Liu W., Applying deep recurrent neural network to predict vehicle mobility, in: 2018 IEEE Vehicular Networking Conference, VNC, 2018, pp. 1–6. https://ieeexplore.ieee.org/abstract/document/8628362/. (Accessed 5 February 2020).
[140]
Zhao L., Wang J., Liu J., Routing for crowd management in smart cities: A deep reinforcement learning perspective, IEEE Commun. Mag. (2019) 88–93. https://ieeexplore.ieee.org/abstract/document/8703471/. (Accessed 5 February 2020).
[141]
V.C. Liang, R.T.B. Ma, W. Siong Ng, L. Wang, M. Winslett, H. Wu, S. Ying, Z. Zhang, Mercury: Metro density prediction with recurrent neural network on streaming CDR Data, in: 2016 IEEE 32nd International Conference on Data Engineering, ICDE, 2016, pp. 1374–1377.
[142]
Zhou Z., Liao H., Gu B., Huq K.M.S., Mumtaz S., Rodriguez J., Robust mobile crowd sensing: When deep learning meets edge computing, IEEE Netw. 32 (2018) 54–60. https://ieeexplore.ieee.org/abstract/document/8425301/. (Accessed 5 February 2020).
[143]
Wessel Paul, What is smart parking?, 2016, https://parksmart.gbci.org/what-smart-parking. (Accessed 16 March 2020).
[144]
Bura H., Lin N., Kumar N., An edge based smart parking solution using camera networks and deep learning, in: 2018 IEEE International Conference on Cognitive Computing, ICCC, 2018, pp. 17–24. https://ieeexplore.ieee.org/abstract/document/8457691/. (Accessed 5 February 2020).
[145]
Amato G., Carrara F., Falchi F., Gennaro C., Meghini C., Vairo C., Deep learning for decentralized parking lot occupancy detection, Expert Syst. Appl. (2017) 327–334. https://www.raspberrypi.org/products/raspberry-pi-2-. (Accessed 5 February 2020).
[146]
Yang S., Ma W., Pi X., Qian S., A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources, Transp. Res. C 107 (2019) 248–265. https://www.sciencedirect.com/science/article/pii/S0968090X18313780. (Accessed 17 February 2020).
[147]
Zinelli A., Pizzati F., Musto L., A deep-learning approach for parking slot detection on surround-view images, in: 2019 IEEE Intelligent Vehicles Symposium, IV, 2019, pp. 683–688,.
[148]
Muhammad K., Ahmad J., Early fire detection using convolutional neural networks during surveillance for effective disaster management, Neurocomputing 288 (2018) 30–42. https://www.sciencedirect.com/science/article/pii/S0925231217319203. (Accessed 5 February 2020).
[149]
Muhammad K., Khan S., Elhoseny M., Baik S.W., Syed H.A., Efficient fire detection for uncertain surveillance environment, IEEE Trans. Ind. Inf. 15 (2019) 3113–3122,.
[150]
H. Ren, Y. Song, J. Wang, Y. Hu, J. Lei, A deep learning approach to the citywide traffic accident risk prediction, in: 2018 21st International Conference on Intelligent Transportation Systems, ITSC, 2018, pp. 3346–3351.
[151]
Singh D., Chalavadi K.M., Mohan C.K., Deep spatio-temporal representation for detection of road accidents using stacked autoencoder, IEEE Trans. Intell. Transp. Syst. (2018) 879–887,.
[152]
Kamilaris A., Prenafeta-Boldú F.X., Deep learning in agriculture: A survey, Comput. Electron. Agric. (2018) 70–90. https://www.sciencedirect.com/science/article/pii/S0168169917308803. (Accessed 17 February 2020).
[153]
Zahid A., Abbas H.T., Ren A., Zoha A., Heidari H., Shah S.A., Imran M.A., Alomainy A., Abbasi Q.H., Machine learning driven non-invasive approach of water content estimation in living plant leaves using terahertz waves, Plant Methods 15 (2019) 138,.
[154]
Ferentinos K.P., Deep learning models for plant disease detection and diagnosis, Comput. Electron. Agric. (2018) 311–318,.
[155]
Sladojevic S., Arsenovic M., Anderla A., Culibrk D., Stefanovic D., Deep neural networks based recognition of plant diseases by leaf image classification, Comput. Intell. Neurosci. (2016),.
[156]
Liu B., Zhang Y., He D., Li Y., Identification of apple leaf diseases based on deep convolutional neural networks, Symmetry (2018) 11,.
[157]
Bu F., Wang X., A smart agriculture IoT system based on deep reinforcement learning, Future Gener. Comput. Syst. (2019) 500–507. https://www.sciencedirect.com/science/article/pii/S0167739X19307277. (Accessed 5 February 2020).
[158]
Zhu Nanyang, Liu Xu, Liu Ziqian, Hu Kai, Wang Yingkuan, Tan Jinglu, Huang Min, Zhu Qibing, Ji Xunsheng, Jiang Yongnian, Guo Ya, Deep learning for smart agriculture: Concepts, tools, applications, and opportunities, Int. J. Agricult. Biol. Eng. 11 (2018) 32–44,.
[159]
Häni N., Roy P., Isler V., Apple counting using convolutional neural networks, in: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2018, pp. 2559–2565,.
[160]
Liu X., Chen S.W., Aditya S., Sivakumar N., Dcunha S., Qu C., Taylor C.J., Das J., Kumar V., Robust fruit counting: Combining deep learning, tracking, and structure from motion, in: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2018, pp. 1045–1052. http://label.ag/iros18.mp4. (Accessed 18 February 2020).
[161]
S. Dcunha, J. Das, C. Qu, S.W. Chen, S.S. Shivakumar, E. Okon, C.J. Taylor, V. Kumar, Counting apples and oranges with deep learning: A data driven approach, 2 (2017) 781–788, https://doi.org/10.1109/LRA.2017.2651944.
[162]
Zhao X., Zhang R., Wu J.-L., Chang P.-C., A deep recurrent neural network for air quality classification, J. Inf. Hiding Multimedia Signal Process. C 9 (2018).
[163]
Soh P., Chang J., Access J.H., Adaptive deep learning-based air quality prediction model using the most relevant spatial–temporal relations, IEEE Access (2018) 38186–38199. https://ieeexplore.ieee.org/abstract/document/8392677/. (Accessed 5 February 2020).
[164]
Pan Z., Yu H., Miao C., Crowdsensing air quality with camera-enabled mobile devices, in: Twenty-Ninth IAAI Conference, 2017, https://www.aaai.org/ocs/index.php/IAAI/IAAI17/paper/viewPaper/14171. (Accessed 5 February 2020).
[165]
Mutis I., Ambekar A., Joshi V., Real-time space occupancy sensing and human motion analysis using deep learning for indoor air quality control, Autom. Constr. 116 (2020) https://www.sciencedirect.com/science/article/pii/S0926580519307630. (Accessed 20 August 2020).
[166]
Markovic R., Grintal E., Wölki D., Frisch J., van Treeck C., Window opening model using deep learning methods, Build. Environ. (2019) 319–329. https://www.sciencedirect.com/science/article/pii/S0360132318305729. (Accessed 20 August 2020).
[167]
Zeng D., Zhang S., Chen F., Multi-scale CNN based garbage detection of airborne hyperspectral data, IEEE Access (2019) 104514–104527. https://ieeexplore.ieee.org/abstract/document/8782106/. (Accessed 5 February 2020).
[168]
Y. Wang, X. Zhang, Autonomous garbage detection for intelligent urban management, in: MATEC Web of Conferences, 2018, p. 01056, https://doi.org/10.1051/matecconf/201823201056.
[169]
Hasan M., Tanawala B., Patel K., Deep learning precision farming: Tomato leaf disease detection by transfer learning, in: Papers.Ssrn.Com, 2019, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3349597. (Accessed 3 February 2020).
[170]
Bostami B., Ahmed M., Choudhury S., False data injection attacks in internet of things, in: Performability in Internet of Things, 2019, pp. 47–58,.
[171]
Shokri R., Shmatikov V., Privacy-preserving deep learning, in: The 22nd ACM SIGSAC Conference on Computer and Communications Security, 2015, pp. 1310–1321,.
[172]
Zhou J., Cao Z., Dong X., Vasilakos A.V., Vasilakos AV security and privacy for cloud-based IoT: Challenges, IEEE Commun. Mag. 55 (2017) 26–33. https://ieeexplore.ieee.org/abstract/document/7823334/. (Accessed 5 February 2020).
[173]
Hitaj B., Ateniese G., Perez-Cruz F., Deep models under the GAN: Information leakage from collaborative deep learning, in: Proceedings of the ACM Conference on Computer and Communications Security, Association for Computing Machinery, 2017, pp. 603–618,.
[174]
Gandomi A., Management M.H., Beyond the hype: Big data concepts, methods, and analytics, Int. J. Inf. Manage. 35 (2015) 137–144. https://www.sciencedirect.com/science/article/pii/S0268401214001066. (Accessed 23 February 2020).
[175]
(Vonu) Thakuriah P., Tilahun N.Y., Zellner M., Big data and urban informatics: Innovations and challenges to urban planning and knowledge discovery, in: Seeing Cities Through Big Data, Springer, 2017, pp. 11–45,.
[176]
Badar M., Haris M., Fatima A., Application of deep learning for retinal image analysis: A review, Comp. Sci. Rev. 35 (2020),.
[177]
Rahnemoonfar M., Sheppard C., Deep count: Fruit counting based on deep simulated learning, Sensors 17 (2017) 905,.
[178]
Buhrmester V., Münch D., Arens M., Analysis of explainers of black box deep neural networks for computer vision: A survey, 2019, http://arxiv.org/abs/1911.12116. (Accessed 29 March 2020).
[179]
Freitas A.A., Comprehensible classification models, ACM SIGKDD Explor. Newsl. 15 (2014) 1–10,.
[180]
Lim C., Kim K., Cities P., Smart cities with big data: Reference models, challenges, and considerations, Cities (2018) 86–99. https://www.sciencedirect.com/science/article/pii/S0264275117308545. (Accessed 17 February 2020).
[181]
al Nuaimi E., al Neyadi H., Mohamed N., Al-Jaroodi J., Applications of big data to smart cities, J. Internet Serv. Appl. 6 (2015) 1–15,.
[182]
White G., Nallur V., Clarke S., Quality of service approaches in IoT: A systematic mapping, J. Syst. Softw. 132 (2017) 168–203. http://engineeringvillage.com. (Accessed 21 February 2020).
[183]
Driss M., Jamoussi Y., Hajjami H., Ghézala B., QoS testing of service-based applications, in: 2008 3rd International Design and Test Workshop, 2008, pp. 45–50,.
[184]
Driss M., Jamoussi Y., Jézéquel J.-M., Hajjami H., Ghézala B., A discrete-events simulation approach for evaluation of service-based applications, in: 2008 Sixth European Conference on Web Services, IEEE, 2008, pp. 73–78,.
[185]
Jalali R., El-Khatib K., Smart city architecture for community level services through the internet of things, in: 2015 18th International Conference on Intelligence in Next Generation Networks, 2015, pp. 108–113. https://ieeexplore.ieee.org/abstract/document/7073815/. (Accessed 23 February 2020).
[186]
Weiss K., Khoshgoftaar T.M., Wang D.D., A survey of transfer learning, J. Big Data 3 (2016),.
[187]
Deng C., Xue Y., Liu X., Li C., Tao D., Active transfer learning network: A unified deep joint spectral-spatial feature learning model for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. 57 (2018) 1741–1754.
[188]
Gopalakrishnan K., Khaitan S.K., Agrawal A., Khaitan S.K., Choudhary A., Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection, Constr. Build. Mater. 157 (2017) 322–330,.
[189]
Tahir A., Ahmad J., Shah S.A., Morison G., Skelton D.A., Larijani H., Abbasi Q.H., Imran M.A., Gibson R.M., Wifreeze: Multiresolution scalograms for freezing of gait detection in parkinson’s leveraging 5g spectrum with deep learning, Electronics 8 (2019) 1433,.
[191]
Driss M., Jamoussi Y., Jézéquel J.M., ben Ghézala H.H., A multi-perspective approach for web service composition, ACM International Conference Proceeding Series, 2011, pp. 106–111,.
[192]
Driss M., Aljehani A., Boulila W., Ghandorh H., Al-Sarem M., Servicing your requirements: An FCA and RCA-driven approach for semantic web services composition, IEEE Access 8 (2020) 59326–59339. https://ieeexplore.ieee.org/abstract/document/9044348/. (Accessed 22 August 2020).
[193]
Krylovskiy A., Jahn M., Patti E., Designing a smart city internet of things platform with microservice architecture, in: 2015 3rd International Conference on Future Internet of Things and Cloud, 2015, pp. 24–26,.
[194]
Ali S., Aslam Jarwar M., Chong I., Design methodology of microservices to support predictive analytics for IoT applications, Sensors 18 (2018) 4226,.
[195]
Sundsøy P., Bjelland J., Reme B.-A., Iqbal A.M., Jahani E., Deep learning applied to mobile phone data for individual income classification, in: 2016 International Conference on Artificial Intelligence: Technologies and Applications, 2016, https://www.atlantis-press.com/proceedings/icaita-16/25849475. (Accessed 25 February 2020).
[196]
Alsheikh M.A., Niyato D., Lin S., Tan H.-P., Han Z., Mobile big data analytics using deep learning and apache spark, IEEE Netw. 30 (2016) 22–29. https://ieeexplore.ieee.org/abstract/document/7474340/. (Accessed 25 February 2020).
[197]
Safaei M., Ismail A.S., Chizari H., Driss M., Boulila W., Asadi S., Safaei M., Standalone noise and anomaly detection in wireless sensor networks: A novel time-series and adaptive Bayesian-network-based approach, Softw. - Pract. Exp. 50 (2020) 428–446,.
[198]
Safaei M., Asadi S., Driss M., Boulila W., Alsaeedi A., Chizari H., Abdullah R., Safaei M., A systematic literature review on outlier detection in wireless sensor networks, Symmetry 12 (2020) 328,.
[199]
Din I.U., Asmat H., Guizani M., A review of information centric network-based internet of things: communication architectures, design issues, and research opportunities, Multimedia Tools Appl. 78 (2019) 30241–30256,.
[200]
Minoli D., Occhiogrosso B., Practical aspects for the integration of 5g networks and IoT applications in smart cities environments, Wirel. Commun. Mob. Comput. 2019 (2019),.
[201]
Li S., da Xu L., Zhao S., 5g internet of things: A survey, J. Ind. Inf. Integr. 10 (2018) 1–9. https://www.sciencedirect.com/science/article/pii/S2452414X18300037. (Accessed 1 March 2020).
[202]
Reka S.S., Dragičevi T., Siano P., Sahaya Prabaharan S., Future generation 5g wireless networks for smart grid: A comprehensive review, Energies 12 (2019) 2140,.
[203]
Agiwal M., Roy A., Saxena N., Next generation 5g wireless networks: A comprehensive survey, IEEE Commun. Surv. Tutor. 18 (2016) (2016) 1617–1655. https://ieeexplore.ieee.org/abstract/document/7414384/. (Accessed 3 March 2020).
[204]
Tariq F., Khandaker M., Wong K.-K., Imran M., Bennis M., Debbah M., A speculative study on 6g, 2019, http://arxiv.org/abs/1902.06700. (Accessed 1 March 2020).
[205]
Xie Z., Dai S., Chen H.-N., Wang X., Blockchain challenges and opportunities: a survey, Int. Congress Big Data 14 (2018) 352–375,.
[206]
Fernández-Caramés T., Fraga-Lamas P., A review on the use of blockchain for the internet of things, IEEE Access 6 (2018) 32979–33001. https://ieeexplore.ieee.org/abstract/document/8370027/. (Accessed 17 February 2020).
[207]
Ali M., Vecchio M., Pincheira M., Tutorials K.D., Applications of blockchains in the internet of things: A comprehensive survey, IEEE Commun. Surv. Tutor. (2018) 1676–1717. https://ieeexplore.ieee.org/abstract/document/8580364/. (Accessed 17 February 2020).
[208]
Portmann E., Blockchain: Blueprint for a New Economy, Springer Fachmedien Wiesbaden GmbH, 2018,.
[209]
Yaqoob I., Ahmed E., et al., Internet of things architecture: Recent advances, taxonomy, requirements, and open challenges, IEEE Wirel. Commun. 24 (2017) 10–16. https://ieeexplore.ieee.org/abstract/document/7955906/. (Accessed 3 March 2020).
[210]
M. Mohammadi G., Al-Fuqaha A., Enabling cognitive smart cities using big data and machine learning: Approaches and challenges, IEEE Commun. Mag. 56 (2018) 94–101. http://www.havenondemand.com. (Accessed 3 March 2020).
[211]
Letic Jovana, Internet of things statistics for 2020, 2019, https://dataprot.net/statistics/iot-statistics/. (Accessed 27 March 2020).
[212]
Gharaibeh A., Salahuddin M., Khalil I., Salahuddin M.A., Hussini S.J., Member S., Khreishah A., Guizani M., Al-Fuqaha A., Member S., Smart cities: A survey on data management, security and enabling technologies, IEEE Commun. Surv. Tutor. 19 (2017) 2456–2501,.
[213]
Furno A., Fiore M., Stanica R., Joint spatial and temporal classification of mobile traffic demands, in: IEEE INFOCOM 2017-IEEE Conference on Computer Communications, 2017, pp. 1–9. https://hal.inria.fr/hal-01514402. (Accessed 3 March 2020).

Cited By

View all
  • (2024)Intelligent Asset Allocation Portfolio Division and RecommendationJournal of Organizational and End User Computing10.4018/JOEUC.35470736:1(1-23)Online publication date: 17-Sep-2024
  • (2024)Access Control for IoT-based Big Data: a State-of-the-art ReviewProceedings of the 2024 6th International Conference on Big Data Engineering10.1145/3688574.3688586(81-87)Online publication date: 24-Jul-2024
  • (2024)Smart carbon monitoring platform under IoT-Cloud architecture for small cities in B5GWireless Networks10.1007/s11276-021-02756-230:5(3837-3853)Online publication date: 1-Jul-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computer Science Review
Computer Science Review  Volume 38, Issue C
Nov 2020
528 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 November 2020

Author Tags

  1. Internet of Things
  2. Deep Learning
  3. Smart city
  4. Big data analytics
  5. Review

Qualifiers

  • Review-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Intelligent Asset Allocation Portfolio Division and RecommendationJournal of Organizational and End User Computing10.4018/JOEUC.35470736:1(1-23)Online publication date: 17-Sep-2024
  • (2024)Access Control for IoT-based Big Data: a State-of-the-art ReviewProceedings of the 2024 6th International Conference on Big Data Engineering10.1145/3688574.3688586(81-87)Online publication date: 24-Jul-2024
  • (2024)Smart carbon monitoring platform under IoT-Cloud architecture for small cities in B5GWireless Networks10.1007/s11276-021-02756-230:5(3837-3853)Online publication date: 1-Jul-2024
  • (2024)The deep learning applications in IoT-based bio- and medical informatics: a systematic literature reviewNeural Computing and Applications10.1007/s00521-023-09366-336:11(5757-5797)Online publication date: 1-Apr-2024
  • (2024)Strengthening Network Intrusion Detection in IoT Environments with Self-supervised Learning and Few Shot LearningComputational Collective Intelligence10.1007/978-3-031-70819-0_7(83-96)Online publication date: 9-Sep-2024
  • (2024)Exploring the applications and security threats of Internet of Thing in the cloud computing paradigmTransactions on Emerging Telecommunications Technologies10.1002/ett.489735:4Online publication date: 8-Apr-2024
  • (2023)Application of Big Data Privacy Protection Based on Edge Computing in the Prediction of Martial Arts Training Movement TrajectoryInternational Journal of Information Technology and Web Engineering10.4018/IJITWE.33422618:1(1-14)Online publication date: 28-Nov-2023
  • (2021)Internet of Things Based Intelligent Techniques in Workable ComputingScientific Programming10.1155/2021/68051042021Online publication date: 1-Jan-2021

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media