Nothing Special   »   [go: up one dir, main page]

skip to main content
review-article

A survey of network-based intrusion detection data sets

Published: 01 September 2019 Publication History

Abstract

Labeled data sets are necessary to train and evaluate anomaly-based network intrusion detection systems. This work provides a focused literature survey of data sets for network-based intrusion detection and describes the underlying packet- and flow-based network data in detail. The paper identifies 15 different properties to assess the suitability of individual data sets for specific evaluation scenarios. These properties cover a wide range of criteria and are grouped into five categories such as data volume or recording environment for offering a structured search. Based on these properties, a comprehensive overview of existing data sets is given. This overview also highlights the peculiarities of each data set. Furthermore, this work briefly touches upon other sources for network-based data such as traffic generators and data repositories. Finally, we discuss our observations and provide some recommendations for the use and the creation of network-based data sets.

References

[1]
M. Alkasassbeh, G. Al-Naymat, A. Hassanat, M. Almseidin, Detecting distributed denial of service attacks using data mining techniques, Int J Adv Comput Sci Appl (IJACSA) 7 (1) (2016) 436–445.
[2]
S. Anwar, J. Mohamad Zain, M.F. Zolkipli, Z. Inayat, S. Khan, B. Anthony, V. Chang, From intrusion detection to an intrusion response system: fundamentals, requirements, and future directions, Algorithms 10 (2) (2017) 39.
[3]
F.J. Aparicio-Navarro, K.G. Kyriakopoulos, D.J. Parish, Automatic dataset labelling and feature selection for intrusion detection systems, Proceedings of the IEEE military communications conference (MILCOM), IEEE, 2014, pp. 46–51,.
[4]
A.J. Aviv, A. Haeberlen, Challenges in Experimenting with Botnet Detection Systems, Proceedings of the conference on cyber security experimentation and test (CEST), USENIX Association, Berkeley, CA, USA, 2011.
[5]
F. Beer, T. Hofer, D. Karimi, U. Bühler, A new Attack Composition for Network Security, 10. DFN-Forum Kommunikationstechnologien, Gesellschaft für Informatik eV, 2017, pp. 11–20.
[6]
E.B. Beigi, H.H. Jazi, N. Stakhanova, A.A. Ghorbani, Towards effective feature selection in machine learning-based botnet detection approaches, Proceedings of the IEEE conference on communications and network security, IEEE, 2014, pp. 247–255,.
[7]
S. Bhattacharya, S. Selvakumar, SSENet-2014 Dataset: A Dataset for Detection of Multiconnection Attacks, Proceedings of the international conference on eco-friendly computing and communication systems (ICECCS), IEEE, 2014, pp. 121–126,.
[8]
M.H. Bhuyan, D.K. Bhattacharyya, J.K. Kalita, Network anomaly detection: methods, systems and tools, IEEE Commun Surv Tutor 16 (1) (2014) 303–336,.
[9]
M.H. Bhuyan, D.K. Bhattacharyya, J.K. Kalita, Towards generating real-life datasets for network intrusion detection, Int J Netw Secur (IJNS) 17 (6) (2015) 683–701.
[10]
D. Brauckhoff, A. Wagner, M. May, FLAME: a flow-level anomaly modeling engine, Proceedings of the workshop on cyber security experimentation and test (CSET), USENIX Association, 2008, pp. 1:1–1:6.
[11]
G. Brogi, V.V.T. Tong, Sharing and replaying attack scenarios with Moirai, RESSI 2017: Rendez-vous de la Recherche et de l’Enseignement de la Sécurité des Systémes d’Information, 2017.
[12]
Z.B. Celik, J. Raghuram, G. Kesidis, D.J. Miller, Salting public traces with attack traffic to test flow classifiers, Proceedings of the workshop on cyber security experimentation and test (CSET), 2011.
[13]
M. Cermak, T. Jirsik, P. Velan, J. Komarkova, S. Spacek, M. Drasar, T. Plesnik, Towards provable network traffic measurement and analysis via semi-labeled trace datasets, Proceedings of the network traffic measurement and analysis conference (TMA), IEEE, 2018, pp. 1–8,.
[14]
V. Chandola, E. Eilertson, L. Ertoz, G. Simon, V. Kumar, Data mining for cyber security, in: Singhal A. (Ed.), Data warehousing and data mining techniques for computer security, 1st, Springer, 2006, pp. 83–107.
[15]
B. Claise, Cisco Systems NetFlow Services Export Version 9, Internet Engineering Task Force (2004),.
[16]
B. Claise, Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of IP Traffic Flow Information, Internet Engineering Task Force (2008),.
[17]
G. Creech, J. Hu, Generation of a New IDS Test Dataset: Time to Retire the KDD Collection, Proceedings of the IEEE wireless communications and networking conference (WCNC), IEEE, 2013, pp. 4487–4492,.
[18]
F. Erlacher, F. Dressler, How to Test an IDS?: GENESIDS: an automated system for generating attack traffic, Proceedings of the workshop on traffic measurements for cybersecurity (WTMC), ACM, New York, NY, USA, 2018, pp. 46–51,.
[19]
R. Fontugne, P. Borgnat, P. Abry, K. Fukuda, MAWILab: Combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking, Proceedings of the international conference on emerging networking experiments and technologies (CoNEXT), ACM, New York, NY, USA, 2010, pp. 8:1–8:12,.
[20]
S. Garcia, M. Grill, J. Stiborek, A. Zunino, An empirical comparison of botnet detection methods, Comput Secur 45 (2014) 100–123,.
[21]
C.T. Giménez, A.P. Villegas, G.Á. Marañón, HTTP data set CSIC 2010, CSIC (2010).
[22]
Glass-Vanderlan T.R., Iannacone M.D., Vincent M.S., Bridges R.A., et al. A survey of intrusion detection systems leveraging host data. arXiv:1805060702018;.
[23]
P. Gogoi, M.H. Bhuyan, D. Bhattacharyya, J.K. Kalita, Packet and flow based network intrusion dataset, Proceedings of the international conference on contemporary computing, Springer, 2012, pp. 322–334,.
[24]
F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, et al., GT: picking up the truth from the ground for internet traffic, ACM SIGCOMM Comput Commun Rev 39 (5) (2009) 12–18,.
[25]
F. Haddadi, A.N. Zincir-Heywood, Benchmarking the effect of flow exporters and protocol filters on botnet traffic classification, IEEE Syst J 10 (4) (2016) 1390–1401,.
[26]
W. Haider, J. Hu, J. Slay, B. Turnbull, Y. Xie, Generating realistic intrusion detection system dataset based on fuzzy qualitative modeling, J Netw Comput Appl 87 (2017) 185–192,.
[27]
J. Han, J. Pei, M. Kamber, Data mining: concepts and techniques, 3rd, Elsevier, 2011.
[28]
M. Hatada, M. Akiyama, T. Matsuki, T. Kasama, Empowering anti-malware research in Japan by sharing the MWS datasets, J Inf Process 23 (5) (2015) 579–588,.
[29]
H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans Knowl Data Eng 21 (9) (2009) 1263–1284,.
[30]
L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, A. Pras, SSHCure: a flow-based SSH intrusion detection system, Proceedings of the international conference on autonomous infrastructure, management and security (IFIP), Springer, 2012, pp. 86–97,.
[31]
R. Hofstede, L. Hendriks, A. Sperotto, A. Pras, SSH compromise detection using NetFlow/IPFIX, ACM SIGCOMM Comput Commun Rev 44 (5) (2014) 20–26,.
[32]
R. Hofstede, A. Pras, A. Sperotto, G.D. Rodosek, Flow-based compromise detection: lessons learned, IEEE Secur Privacy 16 (1) (2018) 82–89,.
[33]
C.M. Inacio, B. Trammell, YAF: yet another flowmeter, Proceedings of the large installation system administration conference, 2010, pp. 107–118.
[34]
M. Javed, V. Paxson, Detecting Stealthy, Distributed SSH Brute-Forcing, Proceedings of the ACM SIGSAC conference on computer & communications security, ACM, 2013, pp. 85–96,.
[35]
H.H. Jazi, H. Gonzalez, N. Stakhanova, A.A. Ghorbani, Detecting HTTP-based application layer DoS attacks on web servers in the presence of sampling, Comput Netw 121 (2017) 25–36,.
[36]
J. Jung, V. Paxson, A.W. Berger, H. Balakrishnan, Fast portscan detection using sequential hypothesis testing, Proceedings of the IEEE symposium on security & privacy, IEEE, 2004, pp. 211–225,.
[37]
D.J. Kelly, R.A. Raines, M.R. Grimaila, R.O. Baldwin, B.E. Mullins, A survey of state-of-the-art in anonymity metrics, Proceedings of the ACM workshop on network data anonymization, ACM, 2008, pp. 31–40,.
[38]
A.D. Kent, Comprehensive, multi-source cyber-security events, Los Alamos National Laboratory, 2015,.
[39]
A.D. Kent, Cybersecurity data sources for dynamic network research, Dynamic networks in cybersecurity, Imperial College Press, 2015, pp. 37–65,.
[40]
R. Koch, M. Golling, G.D. Rodosek, Towards comparability of intrusion detection systems: new data sets, Proceedings of the TERENA networking conference, 7, 2014.
[41]
C. Kolias, G. Kambourakis, A. Stavrou, S. Gritzalis, Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset, IEEE Commun Surv Tutor 18 (1) (2016) 184–208,.
[42]
R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R. Kendall, D. McClung, D. Weber, S.E. Webster, D. Wyschogrod, R.K. Cunningham, et al., Evaluating intrusion detection systems : the 1998 DARPA off-line intrusion detection evaluation, Proceedings of the DARPA information survivability conference and exposition (DISCEX), 2, IEEE, 2000, pp. 12–26,.
[43]
R. Lippmann, J.W. Haines, D.J. Fried, J. Korba, K. Das, The 1999 DARPA off-line intrusion detection evaluation, Comput Netw 34 (4) (2000) 579–595,.
[44]
G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. García-Teodoro, R. Therón, UGR’16: a new dataset for the evaluation of cyclostationarity-based network IDSs, Comput Secur 73 (2018) 411–424,.
[45]
M.V. Mahoney, Network traffic anomaly detection based on packet bytes, Proceedings of the ACM symposium on applied computing, ACM, 2003, pp. 346–350,.
[46]
M. Małowidzki, P. Berezinski, M. Mazur, Network intrusion detection: half a kingdom for a good dataset, Proceedings of the NATO STO SAS-139 workshop, Portugal, 2015.
[47]
J. McHugh, Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by lincoln laboratory, ACM Trans Inf Syst Secur (TISSEC) 3 (4) (2000) 262–294,.
[48]
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J. Turner, OpenFlow: enabling innovation in campus networks, ACM SIGCOMM Comput Commun Rev 38 (2) (2008) 69–74,.
[49]
S. Molnár, P. Megyesi, G. Szabo, How to validate traffic generators?, Proceedings of the IEEE international conference on communications workshops (ICC), IEEE, 2013, pp. 1340–1344,.
[50]
N. Moustafa, J. Slay, UNSW-NB15: a comprehensive data set for network intrusion detection systems, Proceedings of the military communications and information systems conference (MilCIS), IEEE, 2015, pp. 1–6,.
[51]
M.M. Najafabadi, T.M. Khoshgoftaar, C. Kemp, N. Seliya, R. Zuech, Machine learning for detecting brute force attacks at the network level, Proceedings of the international conference on bioinformatics and bioengineering (BIBE), IEEE, 2014, pp. 379–385,.
[52]
J.O. Nehinbe, A critical evaluation of datasets for investigating IDSs and IPSs Researches, Proceedings of the IEEE international conference on cybernetic intelligent systems (CIS), IEEE, 2011, pp. 92–97,.
[53]
A. Nisioti, A. Mylonas, P.D. Yoo, V. Katos, From intrusion detection to attacker attribution: a comprehensive survey of unsupervised methods, IEEE Commun Surv Tutor 20 (4) (2018) 3369–3388,.
[54]
R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, B. Tierney, A first look at modern enterprise traffic, Proceedings of the ACM SIGCOMM conference on internet measurement (IMC), USENIX Association, Berkeley, CA, USA, 2005, pp. 15–28.
[55]
R. Pang, M. Allman, V. Paxson, J. Lee, The devil and packet trace anonymization, ACM SIGCOMM Comput Commun Rev 36 (1) (2006) 29–38,.
[56]
Phaal P. sFlow Specification Version 5. 2004. https://sflow.org/sflow_version_5.txt
[57]
N. Rajasinghe, J. Samarabandu, X. Wang, INSecS-DCS: a highly customizable network intrusion dataset creation framework, Proceedings of the Canadian conference on electrical & computer engineering (CCECE), IEEE, 2018, pp. 1–4,.
[58]
M. Rehák, M. Pechoucek, K. Bartos, M. Grill, P. Celeda, V. Krmicek, CAMNEP: an intrusion detection system for high-speed networks, Prog Inform 5 (5) (2008) 65–74,.
[59]
M. Ring, D. Schlör, D. Landes, A. Hotho, Flow-based network traffic generation using generative adversarial networks, Comput Secur 82 (2019) 156–172,.
[60]
M. Ring, S. Wunderlich, D. Grüdl, D. Landes, A. Hotho, A toolset for intrusion and insider threat detection, in: Palomares I., Kalutarage H., Huang Y. (Eds.), Data analytics and decision support for cybersecurity: trends, methodologies and applications, Springer, 2017, pp. 3–31,.
[61]
M. Ring, S. Wunderlich, D. Grüdl, D. Landes, A. Hotho, Creation of flow-based data sets for intrusion detection, J Inf Warf 16 (2017) 40–53.
[62]
M. Ring, S. Wunderlich, D. Grüdl, D. Landes, A. Hotho, Flow-based benchmark data sets for intrusion detection, Proceedings of the European conference on cyber warfare and security (ECCWS), ACPI, 2017, pp. 361–369.
[63]
M. Ring, D. Landes, A. Hotho, Detection of slow port scans in flow-based network traffic, PLOS ONE 13 (9) (2018) 1–18,.
[64]
S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, W. Lu, J. Felix, P. Hakimian, Detecting P2P botnets through network behavior analysis and machine learning, Proceedings of the international conference on privacy, security and trust (PST), IEEE, 2011, pp. 174–180,.
[65]
B. Sangster, T. O’Connor, T. Cook, R. Fanelli, E. Dean, C. Morrell, G.J. Conti, Toward instrumenting network warfare competitions to generate labeled datasets, Proceedings of the workshop on cyber security experimentation and test (CSET), 2009.
[66]
J.J. Santanna, R. van Rijswijk-Deij, R. Hofstede, A. Sperotto, M. Wierbosch, L.Z. Granville, A. Pras, Booters - An analysis of DDoS-as-a-service attacks, Proceedings of the IFIP/IEEE international symposium on integrated network management (IM), 2015, pp. 243–251,.
[67]
I. Sharafaldin, A. Gharib, A.H. Lashkari, A.A. Ghorbani, Towards a reliable intrusion detection benchmark dataset, Softw Netw 2018 (1) (2018) 177–200,.
[68]
I. Sharafaldin, A.H. Lashkari, A.A. Ghorbani, Toward generating a new intrusion detection dataset and intrusion traffic characterization, Proceedings of the international conference on information systems security and privacy (ICISSP), 2018, pp. 108–116,.
[69]
R. Sharma, R. Singla, A. Guleria, A new labeled flow-based DNS dataset for anomaly detection: PUF dataset, Procedia Comput Sci 132 (2018) 1458–1466,.
[70]
A. Shiravi, H. Shiravi, M. Tavallaee, A.A. Ghorbani, Toward developing a systematic approach to generate benchmark datasets for intrusion detection, Comput Secur 31 (3) (2012) 357–374,.
[71]
R. Singh, H. Kumar, R. Singla, A reference dataset for network traffic activity based intrusion detection system, Int J Comput Commun Control 10 (3) (2015) 390–402,.
[72]
P. Siska, M.P. Stoecklin, A. Kind, T. Braun, A flow trace generator using graph-based traffic classification techniques, Proceedings of the international wireless communications and mobile computing conference (IWCMC), ACM, 2010, pp. 457–462,.
[73]
R. Sommer, V. Paxson, Outside the closed world: on using machine learning for network intrusion detection, Proceedings of the IEEE symposium on security and privacy, IEEE, 2010, pp. 305–316,.
[74]
J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, K. Nakao, Statistical analysis of honeypot data and building of Kyoto 2006+ Dataset for NIDS evaluation, Proceedings of the workshop on building analysis datasets and gathering experience returns for security, ACM, 2011, pp. 29–36,.
[75]
A. Sperotto, R. Sadre, P.T. de Boer, A. Pras, Hidden Markov model modeling of SSH brute-force attacks, Proceedings of the international workshop on distributed systems: operations and management, Springer, 2009, pp. 164–176,.
[76]
A. Sperotto, R. Sadre, F. Van Vliet, A. Pras, A labeled data set for flow-based intrusion detection, Proceedings of the international workshop on IP operations and management, Springer, 2009, pp. 39–50,.
[77]
A. Sridharan, T. Ye, S. Bhattacharyya, Connectionless port scan detection on the backbone, Proceedings of the IEEE international performance computing and communications conference, IEEE, 2006, pp. 10–19,.
[78]
S. Staniford, J.A. Hoagland, J.M. McAlerney, Practical automated detection of stealthy portscans, J Comput Secur 10 (1–2) (2002) 105–136.
[79]
M. Stevanovic, J.M. Pedersen, An analysis of network traffic classification for botnet detection, Proceedings of the IEEE international conference on cyber situational awareness, data analytics and assessment (CyberSA), IEEE, 2015, pp. 1–8,.
[80]
[81]
G. Szabó, D. Orincsay, S. Malomsoky, I. Szabó, On the validation of traffic classification algorithms, Proceedings of the international conference on passive and active network measurement, Springer, 2008, pp. 72–81,.
[82]
A.S. Tanenbaum, D. Wetherall, Computer networks, 5th, Pearson, 2011.
[83]
M. Tavallaee, E. Bagheri, W. Lu, A.A. Ghorbani, A detailed analysis of the KDD CUP 99 data set, Proceedings of the IEEE symposium on computational intelligence for security and defense applications, 2009, pp. 1–6,.
[84]
Turcotte M.J., Kent A.D., Hash C. Unified host and network data set. arXiv:1708075182017;.
[85]
E. Vasilomanolakis, C.G. Cordero, N. Milanov, M. Mühlhäuser, Towards the creation of synthetic, yet realistic, intrusion detection datasets, Proceedings of the IEEE network operations and management symposium (NOMS), IEEE, 2016, pp. 1209–1214,.
[86]
A.R. Vasudevan, E. Harshini, S. Selvakumar, SSENet-2011: a network intrusion detection system dataset and its comparison with KDD CUP 99 dataset, Proceedings of the second Asian Himalayas international conference on Internet (AH-ICI), 2011, pp. 1–5,.
[87]
E.K. Viegas, A.O. Santin, L.S. Oliveira, Toward a reliable anomaly-based intrusion detection in real-world environments, Comput Netw 127 (2017) 200–216,.
[88]
G. Wang, J. Hao, J. Ma, L. Huang, A new approach to intrusion detection using artificial neural networks and fuzzy clustering, Expert Syst Appl 37 (9) (2010) 6225–6232,.
[89]
J. Wang, I.C. Paschalidis, Botnet detection based on anomaly and community detection, IEEE Trans Control Netw Syst 4 (2) (2017) 392–404,.
[90]
C. Wheelus, T.M. Khoshgoftaar, R. Zuech, M.M. Najafabadi, A session based approach for aggregating network traffic data - The SANTA dataset, Proceedings of the IEEE international conference on bioinformatics and bioengineering (BIBE), IEEE, 2014, pp. 369–378,.
[91]
M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.W. Boiten, L.B. da Silva Santos, P.E. Bourne, et al., The FAIR guiding principles for scientific data management and stewardship, Sci Data 3 (2016),.
[92]
J. Xu, J. Fan, M.H. Ammar, S.B. Moon, Prefix-Preserving IP Address Anonymization: measurement-based security evaluation and a new cryptography-based Scheme, Proceedings of the IEEE international conference on network protocols, IEEE, 2002, pp. 280–289,.
[93]
O. Yavanoglu, M. Aydos, A review on cyber security datasets for machine learning algorithms, Proceedings of the IEEE international conference on big data, IEEE, 2017, pp. 2186–2193,.
[94]
C. Yin, Y. Zhu, S. Liu, J. Fei, H. Zhang, An enhancing framework for botnet detection using generative adversarial networks, Proceedings of the international conference on artificial intelligence and big data (ICAIBD), 2018, pp. 228–234,.
[95]
J. Zhang, M. Zulkernine, A. Haque, Random-forests-based network intrusion detection systems, IEEE Trans Syst Man Cybern Part C (Appl Rev) 38 (5) (2008) 649–659,.
[96]
R. Zuech, T.M. Khoshgoftaar, N. Seliya, M.M. Najafabadi, C. Kemp, A new intrusion detection benchmarking system, Proceedings of the international florida artificial intelligence research society conference (FLAIRS), AAAI Press, 2015, pp. 252–256.

Cited By

View all
  • (2025)Survey of federated learning in intrusion detectionJournal of Parallel and Distributed Computing10.1016/j.jpdc.2024.104976195:COnline publication date: 1-Jan-2025
  • (2024)Network Intrusion Detection and Prevention System Using Hybrid Machine Learning with Supervised Ensemble Stacking ModelJournal of Computer Networks and Communications10.1155/2024/57756712024Online publication date: 1-Jan-2024
  • (2024)Taxonomy and Survey of Collaborative Intrusion Detection System using Federated LearningACM Computing Surveys10.1145/370172457:4(1-36)Online publication date: 10-Dec-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computers and Security
Computers and Security  Volume 86, Issue C
Sep 2019
513 pages

Publisher

Elsevier Advanced Technology Publications

United Kingdom

Publication History

Published: 01 September 2019

Author Tags

  1. Intrusion detection
  2. IDS
  3. NIDS
  4. Data sets
  5. Evaluation
  6. Data mining

Qualifiers

  • Review-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Survey of federated learning in intrusion detectionJournal of Parallel and Distributed Computing10.1016/j.jpdc.2024.104976195:COnline publication date: 1-Jan-2025
  • (2024)Network Intrusion Detection and Prevention System Using Hybrid Machine Learning with Supervised Ensemble Stacking ModelJournal of Computer Networks and Communications10.1155/2024/57756712024Online publication date: 1-Jan-2024
  • (2024)Taxonomy and Survey of Collaborative Intrusion Detection System using Federated LearningACM Computing Surveys10.1145/370172457:4(1-36)Online publication date: 10-Dec-2024
  • (2024)Introducing a Comprehensive, Continuous, and Collaborative Survey of Intrusion Detection DatasetsProceedings of the 17th Cyber Security Experimentation and Test Workshop10.1145/3675741.3675754(34-40)Online publication date: 13-Aug-2024
  • (2024)GothX: a generator of customizable, legitimate and malicious IoT network trafficProceedings of the 17th Cyber Security Experimentation and Test Workshop10.1145/3675741.3675753(65-73)Online publication date: 13-Aug-2024
  • (2024)Feasibility of State Space Models for Network Traffic GenerationProceedings of the 2024 SIGCOMM Workshop on Networks for AI Computing10.1145/3672198.3673792(9-17)Online publication date: 4-Aug-2024
  • (2024)Towards realistic problem-space adversarial attacks against machine learning in network intrusion detectionProceedings of the 19th International Conference on Availability, Reliability and Security10.1145/3664476.3669974(1-8)Online publication date: 30-Jul-2024
  • (2024)Biblio-US17: A labeled real URL dataset for anomaly-based intrusion detection systems developmentProceedings of the 2024 European Interdisciplinary Cybersecurity Conference10.1145/3655693.3661319(217-218)Online publication date: 5-Jun-2024
  • (2024)Increasing Detection Rate for Imbalanced Malicious Traffic using Generative Adversarial NetworksProceedings of the 2024 European Interdisciplinary Cybersecurity Conference10.1145/3655693.3655703(74-81)Online publication date: 5-Jun-2024
  • (2024)NetDiffusion: Network Data Augmentation Through Protocol-Constrained Traffic GenerationProceedings of the ACM on Measurement and Analysis of Computing Systems10.1145/36390378:1(1-32)Online publication date: 21-Feb-2024
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media