Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Lycopene destabilizes preformed Aβ fibrils: : Mechanistic insights from all-atom molecular dynamics simulation

Published: 01 August 2023 Publication History

Abstract

The therapeutic strategy employing destabilization of the preformed Aβ fibril by various natural compounds, as studied by experimental and computational methods, has been reported significant in curing Alzheimer’s disease (AD). However, lycopene (a carotenoid), from terpenes family, needs investigation for its destabilization potential of Aβ fibril. The highest antioxidant potential and ability to cross blood brain barrier makes lycopene a preferred choice as drug lead for treating AD. The current study focuses on investigating the destabilization potential and underpinning mechanism of lycopene on different polymorphic forms of Aβ fibril via Molecular Dynamics (MD) simulation. The key findings highlight binding of lycopene to the outer surface of the chain F of the fibril (2NAO). Herein G9, K16 and V18 residues were found to be involved in van der Waals with the methyl groups of the lycopene. Additionally, Y10 and F20 residues were observed to interact via π-π interactions with CC bonds of the lycopene. The surface mediated binding of lycopene to the fibril is attributed to the large size and structural rigidity of lycopene along with the bulky size of 2NAO and narrow space of fibrillar cavity. The destabilization of the fibril is evident by breakage of inherent H-bonds and hydrophobic interactions in the presence of one lycopene molecule. The lesser β-sheet content explains disorganization of the fibril and bars the higher order aggregation curbing neurotoxicity of the fibril. The higher concentration of the lycopene is not found to be linearly correlated with the extent of destabilization of the fibril. Lycopene is also observed to destabilize the other polymorphic form of Aβ fibril (2BEG), by accessing the fibrillar cavity and lowering the β-sheet content. The destabilization observed by lycopene on two major polymorphs of Aβ fibril explains its potency towards developing an effective therapeutic approach in treating AD.

Graphical Abstract

Display Omitted

Highlights

Lycopene (LYC), terpenoid, destabilizes different polymorphs of Aβ fibrils.
LYC binds to the surface of 2NAO.pdb and access cavity of the 2BEG.pdb.
Loss of H-bonds and hydrophobic contacts directs destabilization of the fibrils.
The reduction in β-sheet content governs destabilization of the fibrils.
Higher concentration of the LYC and extent of the destabilization has no positive correlation.

References

[1]
L. Abar, A.R. Vieira, D. Aune, C. Stevens, S. Vingeliene, D.A. Navarro Rosenblatt, D. Chan, D.C. Greenwood, T. Norat, Blood concentrations of carotenoids and retinol and lung cancer risk: an update of the WCRF-AICR systematic review of published prospective studies, Cancer Med. 5 (2016) 2069–2083,.
[2]
S. Andrade, M.J. Ramalho, J.A. Loureiro, M. Pereira, C. do, Natural compounds for Alzheimer’s disease therapy: a systematic review of preclinical and clinical studies, Int. J. Mol. Sci. 20 (2019) 2313,.
[3]
M. Ayaz, F. Ullah, A. Sadiq, M.O. Kim, T. Ali, Editorial: natural products-based drugs: potential therapeutics against Alzheimer’s disease and other neurological disorders, Front. Pharmacol. 10 (2019) 1–5,.
[4]
S.S. Barale, R.S. Parulekar, P.M. Fandilolu, M.J. Dhanavade, K.D. Sonawane, Molecular insights into destabilization of Alzheimer’s Aβ protofibril by arginine containing short peptides: a molecular modeling approach, ACS Omega 4 (2019) 892–903,.
[5]
H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91 (1987) 6269–6271,.
[6]
J. Bieschke, Natural compounds may open new routes to treatment of amyloid diseases, Neurotherapeutics 10 (2013) 429–439,.
[7]
H.R. Bosshard, D.N. Marti, I. Jelesarov, Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings, J. Mol. Recognit. 17 (2004) 1–16,.
[8]
S. Brogi, S. Butini, S. Maramai, R. Colombo, L. Verga, C. Lanni, E. De Lorenzi, S. Lamponi, M. Andreassi, M. Bartolini, V. Andrisano, E. Novellino, G. Campiani, M. Brindisi, S. Gemma, Disease-modifying anti-Alzheimer’s drugs: inhibitors of human cholinesterases interfering with β -amyloid aggregation, CNS Neurosci. Ther. 20 (2014) 624–632,.
[9]
G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys. 126 (2007),.
[10]
W. Chen, L. Mao, H. Xing, L. Xu, X. Fu, L. Huang, D. Huang, Z. Pu, Q. Li, Lycopene attenuates Aβ1-42 secretion and its toxicity in human cell and caenorhabditis elegans models of Alzheimer disease, Neurosci. Lett. 608 (2015) 28–33,.
[11]
K.S. Cho, M. Shin, S. Kim, S.B. Lee, Recent advances in studies on the therapeutic potential of dietary carotenoids in neurodegenerative diseases, Oxid. Med. Cell. Longev. 2018 (2018) 1–13,.
[12]
E.Y. Choi, S.S. Kang, S.K. Lee, B.H. Han, Polyphenolic biflavonoids inhibit amyloid-beta fibrillation and disaggregate preformed amyloid-beta fibrils, Biomol. Ther. 28 (2020) 145–151,.
[13]
S.-H. Chong, J. Yim, S. Ham, Structural heterogeneity in familial Alzheimer’s disease mutants of amyloid-beta peptides, Mol. Biosyst. 9 (2013) 997,.
[14]
K.R. Cousins, Computer review of chemdraw ultra 12.0, J. Am. Chem. Soc. 133 (2011),.
[15]
D. Cox-Georgian, N. Ramadoss, C. Dona, C. Basu, Therapeutic and medicinal uses of terpenes, in: Medicinal Plants, Springer International Publishing, Cham, 2019, pp. 333–359,.
[16]
Q. Dai, A.R. Borenstein, Y. Wu, J.C. Jackson, E.B. Larson, Fruit and vegetable juices and Alzheimer’s disease: the kame project, Am. J. Med. 119 (2006) 751–759,.
[17]
T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N ⋅log( N) method for Ewald sums in large systems, J. Chem. Phys. 98 (1993) 10089–10092,.
[18]
W.-J. Du, J.-J. Guo, M.-T. Gao, S.-Q. Hu, X.-Y. Dong, Y.-F. Han, F.-F. Liu, S. Jiang, Y. Sun, Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity, Sci. Rep. 5 (2015) 7992,.
[19]
M.S. Dutta, S. Basu, Identifying the key residues instrumental in imparting stability to amyloid beta protofibrils – a comparative study using MD simulations of 17–42 residues, J. Biomol. Struct. Dyn. 39 (2021) 431–456,.
[20]
H.J. Dyson, P.E. Wright, H.A. Scheraga, The role of hydrophobic interactions in initiation and propagation of protein folding, Proc. Natl. Acad. Sci. USA 103 (2006) 13057–13061,.
[21]
N.J. Engelmann, S.K. Clinton, J.W. Erdman, Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene, Adv. Nutr. 2 (2011) 51–61,.
[22]
H.-M. Fan, R.-X. Gu, Y.-J. Wang, Y.-L. Pi, Y.-H. Zhang, Q. Xu, D.-Q. Wei, Destabilization of Alzheimer’s Aβ42 protofibrils with a novel drug candidate wgx-50 by molecular dynamics simulations, J. Phys. Chem. B 119 (2015) 11196–11202,.
[23]
N.L. Fawzi, K.L. Kohlstedt, Y. Okabe, T. Head-Gordon, Protofibril assemblies of the arctic, dutch, and flemish mutants of the alzheimer’s Aβ1-40 peptide, Biophys. J. 94 (2008) 2007–2016,.
[24]
M.A. Findeis, The role of amyloid β peptide 42 in Alzheimer’s disease, Pharmacol. Ther. 116 (2007) 266–286,.
[25]
Y. Gong, C. Zhan, Y. Zou, Z. Qian, G. Wei, Q. Zhang, Serotonin and melatonin show different modes of action on Aβ42 protofibril destabilization, ACS Chem. Neurosci. 12 (2021) 799–809,.
[26]
S. Gupta, A.K. Dasmahapatra, Caffeine destabilizes preformed Aβ protofilaments: insights from all atom molecular dynamics simulations, Phys. Chem. Chem. Phys. 21 (2019) 22067–22080,.
[27]
S. Gupta, A.K. Dasmahapatra, Destabilization potential of phenolics on Aβ fibrils: mechanistic insights from molecular dynamics simulation, Phys. Chem. Chem. Phys. 22 (2020) 19643–19658,.
[28]
S. Gupta, A.K. Dasmahapatra, Destabilization of Aβ fibrils by omega-3 polyunsaturated fatty acids: a molecular dynamics study, J. Biomol. Struct. Dyn. 0 (2021) 1–18,.
[29]
B. Han, Y. Liu, S.W. Ginzinger, D.S. Wishart, SHIFTX2: significantly improved protein chemical shift prediction, J. Biomol. NMR 50 (2011) 43–57,.
[30]
D. Heber, Q.-Y. Lu, Overview of mechanisms of action of lycopene, Exp. Biol. Med. 227 (2002) 920–923,.
[31]
B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem. 18 (1997) 1463–1472,.
[32]
W. Huang, Z. Lin, W.F. Van Gunsteren, Validation of the GROMOS 54A7 force field with respect to β-peptide folding, J. Chem. Theory Comput. 7 (2011) 1237–1243,.
[33]
H. Jackson, C.L. Braun, H. Ernst, The chemistry of novel xanthophyll carotenoids, Am. J. Cardiol. 101 (2008) S50–S57,.
[34]
I. Jahan, S.M. Nayeem, Destabilization of Alzheimer’s Aβ 42 protofibrils with acyclovir, carmustine, curcumin, and tetracycline: insights from molecular dynamics simulations, N. J. Chem. 45 (2021) 21031–21048,.
[35]
V. Jani, U. Sonavane, R. Joshi, Destabilization potential of beta sheet breaker peptides on Abeta fibril structure: an insight from molecular dynamics simulation study, RSC Adv. 11 (2021) 23557–23573,.
[36]
Y. Jin, Y. Sun, J. Lei, G. Wei, Dihydrochalcone molecules destabilize Alzheimer’s amyloid-β protofibrils through binding to the protofibril cavity, Phys. Chem. Chem. Phys. 20 (2018) 17208–17217,.
[37]
B. Joshi, S.K. Kar, P.K. Yadav, S. Yadav, L. Shrestha, T.K. Bera, Therapeutic and medicinal uses of lycopene: a systematic review, Int. J. Res. Med. Sci. 8 (2020) 1195,.
[38]
W. Kabsch, C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers 22 (1983) 2577–2637,.
[39]
P.K. Kanchi, A.K. Dasmahapatra, Destabilization of the Alzheimer’s amyloid-β protofibrils by THC: a molecular dynamics simulation study, J. Mol. Graph. Model. 105 (2021),.
[40]
M. Karplus, Contact electron-spin coupling of nuclear magnetic moments, J. Chem. Phys. 30 (1959) 11–15,.
[41]
H. Kaur, S. Chauhan, R. Sandhir, Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson’s disease, Neurochem. Res. 36 (2011) 1435–1443,.
[42]
E. Kesse-Guyot, V.A. Andreeva, V. Ducros, C. Jeandel, C. Julia, S. Hercberg, P. Galan, Carotenoid-rich dietary patterns during midlife and subsequent cognitive function, Br. J. Nutr. 111 (2014) 915–923,.
[43]
A. Kumar, S. Srivastava, S. Tripathi, S.K. Singh, S. Srikrishna, A. Sharma, Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4′ benzyloxyphenyl)-3-hydroxy-chromen-4-one through docking and molecular dynamics simulations, J. Biomol. Struct. Dyn. 34 (2016) 1252–1263,.
[44]
V. L, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159 (1976) 98–103.
[45]
X. LEI, L. LEI, Z. ZHANG, Y. CHENG, Neuroprotective effects of lycopene pretreatment on transient global cerebral ischemia-reperfusion in rats: The role of the Nrf2/HO-1 signaling pathway, Mol. Med. Rep. 13 (2016) 412–418,.
[46]
Justin A. Lemkul, D.R. Bevan, Destabilizing Alzheimer’s Aβ 42 protofibrils with morin: mechanistic insights from molecular dynamics simulations, Biochemistry 49 (2010) 3935–3946,.
[47]
C.-B. Liu, R. Wang, Y.-F. Yi, Z. Gao, Y.-Z. Chen, Lycopene mitigates β-amyloid induced inflammatory response and inhibits NF-κB signaling at the choroid plexus in early stages of Alzheimer’s disease rats, J. Nutr. Biochem. 53 (2018) 66–71,.
[48]
F.-F. Liu, X.-Y. Dong, L. He, A.P.J. Middelberg, Y. Sun, Molecular insight into conformational transition of amyloid β-peptide 42 inhibited by (−)-epigallocatechin-3-gallate probed by molecular simulations, J. Phys. Chem. B 115 (2011) 11879–11887,.
[49]
T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Döbeli, D. Schubert, R. Riek, 3D structure of Alzheimer’s amyloid-β(1–42) fibrils, Proc. Natl. Acad. Sci. USA 102 (2005) 17342–17347,.
[50]
O.S. Makin, E. Atkins, P. Sikorski, J. Johansson, L.C. Serpell, Molecular basis for amyloid fibril formation and stability, Proc. Natl. Acad. Sci. USA 102 (2005) 315–320,.
[51]
A.K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P.C. Nair, C. Oostenbrink, A.E. Mark, An automated force field topology builder (ATB) and repository: version 1.0, J. Chem. Theory Comput. 7 (2011) 4026–4037,.
[52]
K.E. Marshall, K.L. Morris, D. Charlton, N. O’Reilly, L. Lewis, H. Walden, L.C. Serpell, Hydrophobic, aromatic, and electrostatic interactions play a central role in amyloid fibril formation and stability, Biochemistry 50 (2011) 2061–2071,.
[53]
V. Matteo, M. Pierucci, G. Giovanni, L.K. Dragani, S. Murzilli, A. Poggi, E. Esposito, Intake of tomato-enriched diet protects from 6-hydroxydopamine-induced degeneration of rat nigral dopaminergic neurons, in: G. Giovanni, V. Di Matteo, E. Esposito (Eds.), Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra, Springer, Vienna, Vienna, 2009, pp. 333–341,.
[54]
R. Mayeux, Y. Stern, Epidemiology of Alzheimer disease, Cold Spring Harb. Perspect. Med. 2 (2012),.
[55]
S.T. Mayne, B. Cartmel, F. Silva, C.S. Kim, B.G. Fallon, K. Briskin, T. Zheng, M. Baum, G. Shor-Posner, W.J. Goodwin, Plasma lycopene concentrations in humans are determined by lycopene intake, plasma cholesterol concentrations and selected demographic factors, J. Nutr. 129 (1999) 849–854,.
[56]
D. Mehta, R. Jackson, G. Paul, J. Shi, M. Sabbagh, Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015, Expert Opin. Investig. Drugs 26 (2017) 735–739,.
[57]
J. Min, K. Min, Serum lycopene, lutein and zeaxanthin, and the risk of Alzheimer’s disease mortality in older adults, Dement. Geriatr. Cogn. Disord. 37 (2014) 246–256,.
[58]
J.E. Morley, S.A. Farr, A.D. Nguyen, Alzheimer disease, Clin. Geriatr. Med. 34 (2018) 591–601,.
[59]
E. Mourvaki, S. Gizzi, R. Rossi, S. Rufini, Passionflower fruit — a “new” source of lycopene, J. Med. Food 8 (2005) 104–106,.
[60]
S.K. Mudedla, N.A. Murugan, V. Subramanian, H. Agren, Destabilization of amyloid fibrils on interaction with MoS 2 -based nanomaterials, RSC Adv. 9 (2019) 1613–1624,.
[61]
E. Nichols, J.D. Steinmetz, S.E. Vollset, K. Fukutaki, J. Chalek, F. Abd-Allah, A. Abdoli, A. Abualhasan, E. Abu-Gharbieh, T.T. Akram, H. Al Hamad, F. Alahdab, F.M. Alanezi, V. Alipour, S. Almustanyir, H. Amu, I. Ansari, J. Arabloo, T. Ashraf, T. Astell-Burt, G. Ayano, J.L. Ayuso-Mateos, A.A. Baig, A. Barnett, A. Barrow, B.T. Baune, Y. Béjot, W.M.M. Bezabhe, Y.M. Bezabih, A.S. Bhagavathula, S. Bhaskar, K. Bhattacharyya, A. Bijani, A. Biswas, S.R. Bolla, A. Boloor, C. Brayne, H. Brenner, K. Burkart, R.A. Burns, L.A. Cámera, C. Cao, F. Carvalho, L.F.S. Castro-de-Araujo, F. Catalá-López, E. Cerin, P.P. Chavan, N. Cherbuin, D.-T. Chu, V.M. Costa, R.A.S. Couto, O. Dadras, X. Dai, L. Dandona, R. Dandona, V. De la Cruz-Góngora, D. Dhamnetiya, D. Dias da Silva, D. Diaz, A. Douiri, D. Edvardsson, M. Ekholuenetale, I. El Sayed, S.I. El-Jaafary, K. Eskandari, S. Eskandarieh, S. Esmaeilnejad, J. Fares, A. Faro, U. Farooque, V.L. Feigin, X. Feng, S.-M. Fereshtehnejad, E. Fernandes, P. Ferrara, I. Filip, H. Fillit, F. Fischer, S. Gaidhane, P. Galluzzo, A. Ghashghaee, N. Chalek, A. Gialluisi, S.A. Gilani, I.-R. Glavan, E.V. Gnedovskaya, M. Golechha, R. Gupta, V.B. Gupta, V.K. Gupta, M.R. Haider, B.J. Hall, S. Hamidi, A. Hanif, G.J. Hankey, S. Haque, R.K. Hartono, A.I. Hasaballah, M.T. Hasan, A. Hassan, S.I. Hay, K. Hayat, M.I. Hegazy, G. Heidari, R. Heidari-Soureshjani, C. Herteliu, M. Househ, R. Hussain, B.-F. Hwang, L. Iacoviello, I. Iavicoli, O.S. Ilesanmi, I.M. Ilic, M.D. Ilic, S.S.N. Irvani, H. Iso, M. Iwagami, R. Jabbarinejad, L. Jacob, V. Jain, S.K. Jayapal, R. Jayawardena, R.P. Jha, J.B. Jonas, N. Joseph, R. Kalani, A. Kandel, H. Kandel, A. Karch, A.S. Kasa, G.M. Kassie, P. Keshavarz, M.A. Khan, M.N. Khatib, T.A.M. Khoja, J. Khubchandani, M.S. Kim, Y.J. Kim, A. Kisa, S. Kisa, F.M. Kivimäki, W.J. Koroshetz, A. Koyanagi, G.A. Kumar, M. Kumar, H.M. Lak, M. Leonardi, B. Li, S.S. Lim, X. Liu, Y. Liu, G. Logroscino, S. Lorkowski, G. Lucchetti, R. Lutzky Saute, F.G. Magnani, A.A. Malik, J. Massano, M.M. Mehndiratta, R.G. Menezes, A. Meretoja, B. Mohajer, N. Mohamed Ibrahim, Y. Mohammad, A. Mohammed, A.H. Mokdad, S. Mondello, M.A.A. Moni, M. Moniruzzaman, T.B. Mossie, G. Nagel, M. Naveed, V.C. Nayak, S. Neupane Kandel, T.H. Nguyen, B. Oancea, N. Otstavnov, S.S. Otstavnov, M.O. Owolabi, S. Panda-Jonas, F. Irvani, M. Pasovic, U.K. Patel, M. Pathak, M.F.P. Peres, A. Perianayagam, C.B. Peterson, M.R. Phillips, M. Pinheiro, M.A. Piradov, C.D. Pond, M.H. Potashman, F.H. Pottoo, S.I. Prada, A. Radfar, A. Raggi, F. Rahim, M. Rahman, P. Ram, P. Ranasinghe, D.L. Rawaf, S. Rawaf, N. Rezaei, A. Rezapour, S.R. Robinson, M. Romoli, G. Roshandel, R. Sahathevan, A. Sahebkar, M.A. Sahraian, B. Sathian, D. Sattin, M. Sawhney, M. Saylan, S. Schiavolin, A. Seylani, F. Sha, M.A. Shaikh, K. Shaji, M. Shannawaz, J.K. Shetty, M. Shigematsu, J.Il Shin, R. Shiri, D.A.S. Silva, J.P. Silva, R. Silva, J.A. Singh, V.Y. Skryabin, A.A. Skryabina, A.E. Smith, S. Soshnikov, E.E. Spurlock, D.J. Stein, J. Sun, R. Tabarés-Seisdedos, B. Thakur, B. Timalsina, M.R. Tovani-Palone, B.X. Tran, G.W. Tsegaye, S. Valadan Tahbaz, P.R. Valdez, N. Schiavolin, V. Vlassov, G.T. Vu, L.G. Vu, Y.-P. Wang, A. Wimo, A.S. Winkler, L. Yadav, S.H. Yahyazadeh Jabbari, K. Yamagishi, L. Yang, Y. Yano, N. Yonemoto, C. Yu, I. Yunusa, S. Zadey, M.S. Zastrozhin, G.M. Zastrozhina, Z.-J. Zhang, C.J.L. Murray, T. Vos, Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the global burden of disease study 2019, Lancet Public Health 7 (2022) e105–e125,.
[62]
W. Ning, R. Lv, N. Xu, X. Hou, C. Shen, Y. Guo, Z. Fan, N. Cao, X.-P. Liu, Lycopene-loaded microemulsion regulates neurogenesis in rats with Aβ-induced Alzheimer’s disease rats based on the Wnt/β-catenin pathway, Neural Plast. 2021 (2021) 1–15,.
[63]
S. Nosé, M.L. Klein, Constant pressure molecular dynamics for molecular systems, Mol. Phys. 50 (1983) 1055–1076,.
[64]
K. Ono, M. Hirohata, M. Yamada, Ferulic acid destabilizes preformed β-amyloid fibrils in vitro, Biochem. Biophys. Res. Commun. 336 (2005) 444–449,.
[65]
C. Oostenbrink, A. Villa, A.E. Mark, W.F. Van Gunsteren, A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6, J. Comput. Chem. 25 (2004) 1656–1676,.
[66]
G. Orteca, F. Tavanti, Z. Bednarikova, Z. Gazova, G. Rigillo, C. Imbriano, V. Basile, M. Asti, L. Rigamonti, M. Saladini, E. Ferrari, M.C. Menziani, Curcumin derivatives and Aβ-fibrillar aggregates: an interactions’ study for diagnostic/therapeutic purposes in neurodegenerative diseases, Bioorg. Med. Chem. 26 (2018) 4288–4300,.
[67]
I.M. Petyaev, Lycopene deficiency in ageing and cardiovascular disease, Oxid. Med. Cell. Longev. 2016 (2016) 1–6,.
[68]
S. Przybylska, Lycopene – a bioactive carotenoid offering multiple health benefits: a review, Int. J. Food Sci. Technol. 55 (2020) 11–32,.
[69]
R. Re, G.D. Mishra, C.W. Thane, C.J. Bates, Tomato consumption and plasma lycopene concentration in people aged 65 y and over in a British national survey, Eur. J. Clin. Nutr. 57 (2003) 1545–1554,.
[70]
C. Rivière, J.-C. Delaunay, F. Immel, C. Cullin, J.-P. Monti, The polyphenol piceid destabilizes preformed amyloid fibrils and oligomers in vitro: hypothesis on possible molecular mechanisms, Neurochem. Res. 34 (2009) 1120–1128,.
[71]
A.K. Sachdeva, K. Chopra, Lycopene abrogates Aβ(1-42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer’s disease, J. Nutr. Biochem. 26 (2015) 736–744,.
[72]
R.K. Saini, S. Shuaib, B. Goyal, Molecular insights into Aβ 42 protofibril destabilization with a fluorinated compound D744: a molecular dynamics simulation study, J. Mol. Recognit. 30 (2017),.
[73]
R.K. Saini, S. Shuaib, D. Goyal, B. Goyal, Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ 42 aggregation and protofibril destabilization: a molecular dynamics simulation study, J. Biomol. Struct. Dyn. 37 (2019) 3183–3197,.
[74]
R.D. Semba, S.S. Chang, K. Sun, S. Talegawkar, L. Ferrucci, L.P. Fried, Serum carotenoids and pulmonary function in older community-dwelling women, J. Nutr., Health Aging 16 (2012) 291–296,.
[75]
A. Sgarbossa, S. Monti, F. Lenci, E. Bramanti, R. Bizzarri, V. Barone, The effects of ferulic acid on β-amyloid fibrillar structures investigated through experimental and computational techniques, Biochim. Biophys. Acta - Gen. Subj. 1830 (2013) 2924–2937,.
[76]
B. Sharma, S. Kalita, A. Paul, B. Mandal, S. Paul, The role of caffeine as an inhibitor in the aggregation of amyloid forming peptides: a unified molecular dynamics simulation and experimental study, RSC Adv. 6 (2016) 78548–78558,.
[77]
G. Šimić, M. Babić Leko, S. Wray, C. Harrington, I. Delalle, N. Jovanov-Milošević, D. Bažadona, L. Buée, R. de Silva, G. Di Giovanni, C. Wischik, P. Hof, Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies, Biomolecules 6 (2016) 6,.
[78]
A.K. Somavarapu, K.P. Kepp, The dependence of amyloid-β dynamics on protein force fields and water models, ChemPhysChem 16 (2015) 3278–3289,.
[79]
B. Tarus, J.E. Straub, D. Thirumalai, Dynamics of Asp23−Lys28 salt-bridge formation in Aβ 10-35 monomers, J. Am. Chem. Soc. 128 (2006) 16159–16168,.
[80]
F. Tavanti, A. Pedone, M. Menziani, Computational insight into the effect of natural compounds on the destabilization of preformed amyloid-β(1–40) fibrils, Molecules 23 (2018) 1320,.
[81]
D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GROMACS: fast, flexible, and free, J. Comput. Chem. (2005),.
[82]
G.W. Vuister, A. Bax, Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNH.alpha.) coupling constants in 15N-enriched proteins, J. Am. Chem. Soc. 115 (1993) 7772–7777,.
[83]
K.-H. Wagner, I. Elmadfa, Biological relevance of terpenoids, Ann. Nutr. Metab. 47 (2003) 95–106,.
[84]
M.A. Wälti, F. Ravotti, H. Arai, C.G. Glabe, J.S. Wall, A. Böckmann, P. Güntert, B.H. Meier, R. Riek, Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril, Proc. Natl. Acad. Sci. USA 113 (2016) E4976–E4984,.
[85]
D.M. Williams, S. Hägg, N.L. Pedersen, Circulating antioxidants and Alzheimer disease prevention: a Mendelian randomization study, Am. J. Clin. Nutr. 109 (2019) 90–98,.
[86]
P.K. Windsor, S.P. Plassmeyer, D.S. Mattock, J.C. Bradfield, E.Y. Choi, B.R. Miller, B.H. Han, Biflavonoid-induced disruption of hydrogen bonds leads to amyloid-β disaggregation, Int. J. Mol. Sci. 22 (2021) 2888,.
[87]
J.V. Woodside, A.J. McGrath, N. Lyner, M.C. McKinley, Carotenoids and health in older people, Maturitas 80 (2015) 63–68,.
[88]
H. Xie, J.-R. Wang, L.-F. Yau, Y. Liu, L. Liu, Q.-B. Han, Z. Zhao, Z.-H. Jiang, Catechins and procyanidins of ginkgo biloba show potent activities towards the inhibition of β-amyloid peptide aggregation and destabilization of preformed fibrils, Molecules 19 (2014) 5119–5134,.
[89]
J. Zheng, H. Jang, B. Ma, C.-J. Tsai, R. Nussinov, Modeling the Alzheimer Aβ17-42 fibril architecture: tight intermolecular sheet-sheet association and intramolecular hydrated cavities, Biophys. J. 93 (2007) 3046–3057,.
[90]
Y. Zou, Z. Qian, Y. Chen, H. Qian, G. Wei, Q. Zhang, Norepinephrine inhibits Alzheimer’s amyloid-β peptide aggregation and destabilizes amyloid-β protofibrils: a molecular dynamics simulation study, ACS Chem. Neurosci. 10 (2019) 1585–1594,.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computational Biology and Chemistry
Computational Biology and Chemistry  Volume 105, Issue C
Aug 2023
221 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 August 2023

Author Tags

  1. LYC
  2. AD
  3. PUFAs
  4. MD

Author Tags

  1. Alzheimer’ Disease
  2. Aβ fibril
  3. Lycopene
  4. Destabilization
  5. Molecular Dynamic Simulations

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Dec 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media