Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

SAN-Net: : Learning generalization to unseen sites for stroke lesion segmentation with self-adaptive normalization

Published: 01 April 2023 Publication History

Abstract

There are considerable interests in automatic stroke lesion segmentation on magnetic resonance (MR) images in the medical imaging field, as stroke is an important cerebrovascular disease. Although deep learning-based models have been proposed for this task, generalizing these models to unseen sites is difficult due to not only the large inter-site discrepancy among different scanners, imaging protocols, and populations, but also the variations in stroke lesion shape, size, and location. To tackle this issue, we introduce a self-adaptive normalization network, termed SAN-Net, to achieve adaptive generalization on unseen sites for stroke lesion segmentation. Motivated by traditional z-score normalization and dynamic network, we devise a masked adaptive instance normalization (MAIN) to minimize inter-site discrepancies, which standardizes input MR images from different sites into a site-unrelated style by dynamically learning affine parameters from the input; i.e., MAIN can affinely transform the intensity values. Then, we leverage a gradient reversal layer to force the U-net encoder to learn site-invariant representation with a site classifier, which further improves the model generalization in conjunction with MAIN. Finally, inspired by the “pseudosymmetry” of the human brain, we introduce a simple yet effective data augmentation technique, termed symmetry-inspired data augmentation (SIDA), that can be embedded within SAN-Net to double the sample size while halving memory consumption. Experimental results on the benchmark Anatomical Tracings of Lesions After Stroke (ATLAS) v1.2 dataset, which includes MR images from 9 different sites, demonstrate that under the “leave-one-site-out” setting, the proposed SAN-Net outperforms recently published methods in terms of quantitative metrics and qualitative comparisons.

Highlights

To the best of our knowledge, this is the first attempt at site generalization for stroke lesion segmentation.
The proposed SAN-Net integrates image-level harmonization and feature-level site-invariant representation.
MAIN dynamically standardizes input images into a site-unrelated style as an adaptive linear transformation.
A simple yet effective data augmentation technique termed SIDA is introduced.

References

[1]
Virani S.S., Alonso A., Aparicio H.J., Benjamin E.J., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Cheng S., Delling F.N., et al., Heart disease and stroke statistics—2021 update: a report from the American Heart Association, Circulation 143 (8) (2021) e254–e743.
[2]
Neumann A.B., Jonsdottir K.Y., Mouridsen K., Hjort N., Gyldensted C., Bizzi A., Fiehler J., Gasparotti R., Gillard J.H., Hermier M., et al., Interrater agreement for final infarct MRI lesion delineation, Stroke 40 (12) (2009) 3768–3771.
[3]
Karthik R., Radhakrishnan M., Rajalakshmi R., Raymann J., Delineation of ischemic lesion from brain MRI using attention gated fully convolutional network, Biomed. Eng. Lett. 11 (1) (2021) 3–13.
[4]
Karthik R., Menaka R., Hariharan M., Won D., Contour-enhanced attention CNN for CT-based COVID-19 segmentation, Pattern Recognit. 125 (2022).
[5]
Qi K., Yang H., Li C., Liu Z., Wang M., Liu Q., Wang S., X-Net: Brain stroke lesion segmentation based on depthwise separable convolution and long-range dependencies, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, Vol. 11766, 2019, pp. 247–255.
[6]
Liu X., Yang H., Qi K., Dong P., Liu Q., Liu X., Wang R., Wang S., MSDF-Net: Multi-scale deep fusion network for stroke lesion segmentation, IEEE Access 7 (2019) 178486–178495.
[7]
Zhou Y., Huang W., Dong P., Xia Y., Wang S., D-UNet: A dimension-fusion u shape network for chronic stroke lesion segmentation, IEEE/ACM Trans. Comput. Biol. Bioinf. 18 (3) (2021) 940–950.
[8]
Xue Y., Farhat F.G., Boukrina O., Barrett A., Binder J.R., Roshan U.W., Graves W.W., A multi-path 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images, NeuroImage Clin. 25 (2019).
[9]
Basak H., Hussain R., Rana A., DFENet: A novel dimension fusion edge guided network for brain MRI segmentation, SN Comput. Sci. 2 (6) (2021) 435.
[10]
Isensee F., Jaeger P.F., Kohl S.A., Petersen J., Maier-Hein K.H., nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation, Nature Methods 18 (2) (2021) 203–211.
[11]
Guan H., Liu Y., Yang E., Yap P.-T., Shen D., Liu M., Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification, Med. Image Anal. 71 (2021).
[12]
Wang J., Lan C., Liu C., Ouyang Y., Qin T., Lu W., Chen Y., Zeng W., Yu P., Generalizing to unseen domains: A survey on domain generalization, in: International Joint Conference on Artificial Intelligence, 2021, pp. 4627–4635.
[13]
Reinhold J.C., Dewey B.E., Carass A., Prince J.L., Evaluating the impact of intensity normalization on MR image synthesis, in: Medical Imaging 2019: Image Processing, Vol. 10949, 2019, pp. 890–898.
[14]
Zhao H., Zhang S., Wu G., Moura J.M., Costeira J.P., Gordon G.J., Adversarial multiple source domain adaptation, in: Advances in Neural Information Processing Systems, Vol. 31, 2018, pp. 8568–8579.
[15]
Zhao S., Li B., Yue X., Gu Y., Xu P., Hu R., Chai H., Keutzer K., Multi-source domain adaptation for semantic segmentation, in: Advances in Neural Information Processing Systems, Vol. 32, 2019, pp. 7287–7300.
[16]
Li Y., Yang Y., Zhou W., Hospedales T., Feature-critic networks for heterogeneous domain generalization, in: International Conference on Machine Learning, 2019, pp. 3915–3924.
[17]
Liu Q., Chen C., Qin J., Dou Q., Heng P.-A., FedDG: Federated domain generalization on medical image segmentation via episodic learning in continuous frequency space, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1013–1023.
[18]
Yang C., Guo X., Chen Z., Yuan Y., Source free domain adaptation for medical image segmentation with Fourier style mining, Med. Image Anal. 79 (2022).
[19]
Zhou Z., Qi L., Shi Y., Generalizable medical image segmentation via random amplitude mixup and domain-specific image restoration, in: European Conference on Computer Vision, 2022, pp. 420–436.
[20]
Yang S., Wang X., Yang Q., Dong E., Du S., Instance segmentation based on improved self-adaptive normalization, Sensors 22 (12) (2022) 4396.
[21]
Zhang Y., Liu S., Li C., Wang J., Application of deep learning method on ischemic stroke lesion segmentation, J. Shanghai Jiaotong Univ. (2021) 1–13.
[22]
Qiu Z., Hu Y., Zhang J., Chen X., Liu J., FGAM: A pluggable light-weight attention module for medical image segmentation, Comput. Biol. Med. (2022).
[23]
Hashemi M., Akhbari M., Jutten C., Delve into multiple sclerosis (MS) lesion exploration: a modified attention U-net for MS lesion segmentation in brain MRI, Comput. Biol. Med. 145 (2022).
[24]
Karthik R., Gupta U., Jha A., Rajalakshmi R., Menaka R., A deep supervised approach for ischemic lesion segmentation from multimodal MRI using Fully Convolutional Network, Appl. Soft Comput. 84 (2019).
[25]
Karthik R., Menaka R., Hariharan M., Won D., Ischemic lesion segmentation using ensemble of multi-scale region aligned CNN, Comput. Methods Programs Biomed. 200 (2021).
[26]
Xiong H., Liu S., Sharan R.V., Coiera E., Berkovsky S., Weak label based Bayesian U-Net for optic disc segmentation in fundus images, Artif. Intell. Med. 126 (2022).
[27]
Liew S.-L., Anglin J.M., Banks N.W., Sondag M., Ito K.L., Kim H., Chan J., Ito J., Jung C., Khoshab N., et al., A large, open source dataset of stroke anatomical brain images and manual lesion segmentations, Sci. Data 5 (2018).
[28]
Yang H., Huang W., Qi K., Li C., Liu X., Wang M., Zheng H., Wang S., CLCI-Net: Cross-level fusion and context inference networks for lesion segmentation of chronic stroke, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019, pp. 266–274.
[29]
Zhang Y., Wu J., Liu Y., Chen Y., Wu E.X., Tang X., A 3D+2D CNN approach incorporating boundary loss for stroke lesion segmentation, in: International Workshop on Machine Learning in Medical Imaging, Vol. 12436, 2020, pp. 101–110.
[30]
Tomita N., Jiang S., Maeder M.E., Hassanpour S., Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network, NeuroImage Clin. 27 (2020).
[31]
Zhang Y., Wu J., Liu Y., Chen Y., Wu E.X., Tang X., MI-UNet: Multi-inputs UNet incorporating brain parcellation for stroke lesion segmentation from T1-weighted magnetic resonance images, IEEE J. Biomed. Health Inform. 25 (2) (2021) 526–535.
[32]
Wang M., Deng W., Deep visual domain adaptation: A survey, Neurocomputing 312 (2018) 135–153.
[33]
Sun Y., Gao K., Wu Z., Li G., Zong X., Lei Z., Wei Y., Ma J., Yang X., Feng X., et al., Multi-site infant brain segmentation algorithms: The iSeg-2019 Challenge, IEEE Trans. Med. Imaging 40 (5) (2021) 1363–1376.
[34]
Carré A., Klausner G., Edjlali M., Lerousseau M., Briend-Diop J., Sun R., Ammari S., Reuzé S., Alvarez Andres E., Estienne T., et al., Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics, Sci. Rep. 10 (1) (2020) 12340.
[35]
Ganin Y., Lempitsky V., Unsupervised domain adaptation by backpropagation, in: International Conference on Machine Learning, Vol. 37, 2015, pp. 1180–1189.
[36]
Ganin Y., Ustinova E., Ajakan H., Germain P., Larochelle H., Laviolette F., Marchand M., Lempitsky V., Domain-adversarial training of neural networks, J. Mach. Learn. Res. 17 (1) (2016) 2096–2030.
[37]
Tsai Y.-H., Hung W.-C., Schulter S., Sohn K., Yang M.-H., Chandraker M., Learning to adapt structured output space for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7472–7481.
[38]
Long M., Zhu H., Wang J., Jordan M.I., Deep transfer learning with joint adaptation networks, in: International Conference on Machine Learning, PMLR, 2017, pp. 2208–2217.
[39]
Wilson G., Cook D.J., A survey of unsupervised deep domain adaptation, ACM Trans. Intell. Syst. Technol. 11 (5) (2020) 1–46.
[40]
Dou Q., Coelho de Castro D., Kamnitsas K., Glocker B., Domain generalization via model-agnostic learning of semantic features, Adv. Neural Inf. Process. Syst. 32 (2019) 6450–6461.
[41]
Dinsdale N.K., Jenkinson M., Namburete A.I., Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal, NeuroImage 228 (2021).
[42]
Yang Y., Soatto S., FDA: Fourier domain adaptation for semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4085–4095.
[43]
Xu Q., Zhang R., Zhang Y., Wang Y., Tian Q., A Fourier-based framework for domain generalization, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14383–14392.
[44]
Zhou K., Liu Z., Qiao Y., Xiang T., Loy C.C., Domain generalization: A survey, IEEE Trans. Pattern Anal. Mach. Intell. (2022) 1–20.
[45]
Han Y., Huang G., Song S., Yang L., Wang H., Wang Y., Dynamic neural networks: A survey, IEEE Trans. Pattern Anal. Mach. Intell. 44 (2021) 7436–7456.
[46]
Huang X., Belongie S., Arbitrary style transfer in real-time with adaptive instance normalization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1510–1519.
[47]
Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y., Generative adversarial nets, Adv. Neural Inf. Process. Syst. 27 (2014) 139–144.
[48]
Narkhede Sachin G., Khairnar V., Kadu S., Brain tumor detection based on mathematical analysis and symmetry information, Int. J. Eng. Res. Appl. 4 (2) (2014) 231–235.
[49]
Kermi A., Andjouh K., Zidane F., Fully automated brain tumour segmentation system in 3D-MRI using symmetry analysis of brain and level sets, IET Image Process. 12 (11) (2018) 1964–1971.
[50]
Liu C.-F., Padhy S., Ramachandran S., Wang V.X., Efimov A., Bernal A., Shi L., Vaillant M., Ratnanather J.T., Faria A.V., et al., Using deep Siamese neural networks for detection of brain asymmetries associated with Alzheimer’s disease and mild cognitive impairment, Magn. Reson. Imaging 64 (2019) 190–199.
[51]
Griffis J.C., Allendorfer J.B., Szaflarski J.P., Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans, J. Neurosci. Methods 257 (2016) 97–108.
[52]
Sled J.G., Zijdenbos A.P., Evans A.C., A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Trans. Med. Imaging 17 (1) (1998) 87–97.
[53]
Ronneberger O., Fischer P., Brox T., U-Net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, Vol. 9351, 2015, pp. 234–241.
[54]
Milletari F., Navab N., Ahmadi S.-A., V-net: Fully convolutional neural networks for volumetric medical image segmentation, in: 2016 Fourth International Conference on 3D Vision (3DV), 2016, pp. 565–571.
[55]
Murphy K.P., Machine Learning: A Probabilistic Perspective, MIT Press, 2012.
[56]
Esteban O., Birman D., Schaer M., Koyejo O.O., Poldrack R.A., Gorgolewski K., MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites, PloS One 12 (9) (2017).
[57]
Liew S.-L., Lo B.P., Donnelly M.R., Zavaliangos-Petropulu A., Jeong J.N., Barisano G., Hutton A., Simon J.P., Juliano J.M., Suri A., et al., A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms, Sci. Data 9 (1) (2022) 1–12.
[58]
Conover S.-L., Jay W., Practical Nonparametric Statistics, Vol. 350, John Wiley & Sons, 1999.
[59]
Huang H., Lin L., Tong R., Hu H., Zhang Q., Iwamoto Y., Han X., Chen Y.-W., Wu J., UNet 3+: A full-scale connected UNet for medical image segmentation, in: IEEE International Conference on Acoustics, Speech and Signal Processing, 2020, pp. 1055–1059.
[60]
Tustison N.J., Johnson H.J., Rohlfing T., Klein A., Ghosh S.S., Ibanez L., Avants B.B., Instrumentation bias in the use and evaluation of scientific software: recommendations for reproducible practices in the computational sciences, Front. Neurosci. 7 (2013) 162.
[61]
Hernandez Petzsche M.R., de la Rosa E., Hanning U., Wiest R., Valenzuela W., Reyes M., Meyer M., Liew S.-L., Kofler F., Ezhov I., et al., ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset, Sci. Data 9 (1) (2022) 1–9.
[62]
Dou Q., So T.Y., Jiang M., Liu Q., Vardhanabhuti V., Kaissis G., Li Z., Si W., Lee H.H., Yu K., et al., Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study, NPJ Digit. Med. 4 (1) (2021) 1–11.
[63]
Guo P., Wang P., Zhou J., Jiang S., Patel V.M., Multi-institutional collaborations for improving deep learning-based magnetic resonance image reconstruction using federated learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 2423–2432.
[64]
Zerka F., Urovi V., Bottari F., Leijenaar R.T., Walsh S., Gabrani-Juma H., Gueuning M., Vaidyanathan A., Vos W., Occhipinti M., et al., Privacy preserving distributed learning classifiers–Sequential learning with small sets of data, Comput. Biol. Med. 136 (2021).

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computers in Biology and Medicine
Computers in Biology and Medicine  Volume 156, Issue C
Apr 2023
226 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 01 April 2023

Author Tags

  1. Stroke lesion segmentation
  2. Multi-site learning
  3. Domain generalization
  4. Site generalization
  5. Convolutional neural network

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Sep 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media