Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

MR image super-resolution reconstruction using sparse representation, nonlocal similarity and sparse derivative prior

Published: 01 March 2015 Publication History

Abstract

In magnetic resonance (MR) imaging, image spatial resolution is determined by various instrumental limitations and physical considerations. This paper presents a new algorithm for producing a high-resolution version of a low-resolution MR image. The proposed method consists of two consecutive steps: (1) reconstructs a high-resolution MR image from a given low-resolution observation via solving a joint sparse representation and nonlocal similarity L1-norm minimization problem; and (2) applies a sparse derivative prior based post-processing to suppress blurring effects. Extensive experiments on simulated brain MR images and two real clinical MR image datasets validate that the proposed method achieves much better results than many state-of-the-art algorithms in terms of both quantitative measures and visual perception. Do MR image SR by jointly using sparsity prior, nonlocal similarity, and sparse derivative prior.Use multi-scale first- and second-order derivative to estimate high-frequency information.Use sparse derivative prior based post-processing to suppress blurring effects in MR images.

References

[1]
H. Greenspan, Super-resolution in medical imaging, Comput. J., 52 (2008) 43-63.
[2]
X.G. Wang, X. Tang, Hallucinating face by eigentransformation., IEEE Trans. Syst. Man Cybern. Part C, 35 (2005) 425-434.
[3]
D. Zhang, H.F. Li, M.H. Du, Fast MAP-based multiframe super-resolution image reconstruction, Image Vision Comput., 23 (2005) 671-679.
[4]
S.C. Park, M.K. Park, M.G. Kang, Super-resolution image reconstruction: a technical overview, IEEE Signal Process. Mag. (May, 21-36, 2003).
[5]
A. Herment, E. Roullot, I. Bloch, O. Jolivet, A.D. Cesare, F. Frouin, J. Bittoun, E. Mousseaux, Local reconstruction of stenosed sections of artery using multiple MRA acquisitions, Magn. Reson. Imaging, 49 (2003) 731-742.
[6]
R. Shilling, T. Robbie, T. Bailloeul, K. Mewes, R. Mersereau, M. Brummer, A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI, IEEE Trans. Med. Imaging, 28 (2009) 633-644.
[7]
H. Greenspan, G. Oz, N. Kiryati, S. Peled, MRI inter-slice reconstruction using super-resolution, Magn. Reson. Imaging, 20 (2002) 437-446.
[8]
R. Islam, A.J. Lambert, M.R. Pickering, Super resolution of 3D MRI images using a Gaussian scale mixture model constraint, in: Proc. ICASSP, 2012, pp. 849-852.
[9]
S. Baker, T. Kanade, Limits on super- resolution and how to break them, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002) 1167-1183.
[10]
D. Zhang, J.Z. He, M.H. Du, Morphable model space based face super-resolution reconstruction and recognition, Image Vision Comput., 30 (2012) 100-108.
[11]
F. Rousseau. Brain hallucination, in: Proc. the European Conference on Computer Vision: Part I, 2008, pp. 497-508.
[12]
J.V. Manjón, P. Coupé, A. Buades, V. Fonov, D.L. Collins, M. Robles, Non-local MRI upsampling, Med. Image Anal., 14 (2010) 784-792.
[13]
E. Candès, T. Tao, Near optimal signal recovery from random projections: universal encoding strategies?, IEEE Trans. Inf. Theory, 52 (2006) 5406-5425.
[14]
W. Dong, L. Zhang, G. Shi, X. Li, Nonlocally centralized sparse representation for image restoration, IEEE Trans. Image Process, 22 (2013) 1620-1630.
[15]
J. Yang, J. Wright, T. Huang, Y. Ma, Image super-resolution via sparse representation, IEEE Trans. Image Process, 19 (2010) 2861-2873.
[16]
W. Dong, L. Zhang, G. Shi, X. Wu, Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization, IEEE Trans. Image Process, 20 (2011) 1838-1857.
[17]
L. Michael, L.D. David, J.M. Santos, M.P. John, Compressed sensing MRI, IEEE Signal Process. Mag., 25 (2008) 72-82.
[18]
J.C. Ye, S. Tak, Y. Han, H.W. Park, Projection reconstruction MR imaging using FOCUSS, Magn. Reson. Med., 57 (2007) 764-775.
[19]
G. Adluru, C. McGann, P. Speier, E.G. Kholmovski, A. Shaaban, E.V.R. DiBella, Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging, J. Magn. Reson. Imaging, 29 (2009) 466-473.
[20]
S. Ravishankar, Y. Bresler, MR image reconstruction from highly undersampled k-space data by dictionary learning, IEEE Trans. Med. Imaging, 30 (2011) 1028-1041.
[21]
Andrea Rueda, Norberto Malpica, Eduardo Romero, Single-image super-resolution of brain MR images using overcomplete dictionaries, Med. Image Anal., 17 (2013) 113-132.
[22]
D. Zhang, M.H. Du Super-resolution image reconstruction via adaptive sparse representation and joint dictionary training, in: Proc. CISP, 2013, pp. 492-497.
[23]
L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992) 259-268.
[24]
S.D. Babacan, R. Molina, A.K. Katsaggelos. Total variation super resolution using a variational approach, in: Proc. Int. Conf. Image Process, 2008, pp. 641-644.
[25]
H.A. Aly, E. Dubois, Image up-sampling using total-variation regularization with a new observation model, IEEE Trans. Image Process, 14 (2005) 1647-1659.
[26]
A. Marquina, S.J. Osher, Image super-resolution by TV-regularization and Bregman iteration, J. Sci. Comput., 37 (2008) 367-382.
[27]
J Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via sparse representation, IEEE Trans. Pattern Anal. Mach. Intell., 31 (2009) 210-227.
[28]
R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc., Ser. B, 58 (1994) 267-288.
[29]
L. Zhang, W. Dong, D. Zhang, G. Shi, Two-stage image denoising by principal component analysis with local pixel grouping, Pattern Recognit., 43 (2010) 1531-1549.
[30]
M. Protter, M. Elad, H. Takeda, P. Milanfar, Generalizing the nonlocal means to super-resolution reconstruction, IEEE Trans. Image Process, 18 (2009) 36-51.
[31]
{http://sparselab.stanford.edu/}.
[32]
Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. imoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process, 13 (2004) 600-612.
[33]
D.L. Collins, A.P. Zijdenbos, V. Kollokian, J.G. Sled, N.J. Kabani, C.J. Holmes, A.C. Evans, Design and construction of a realistic digital brain phantom, IEEE Trans. Med. Imaging, 17 (1998) 463-468.
[34]
S. Kindermann, S. Osher, P.W. Jones., Deblurring and denoising of images by nonlocal functional, Multiscale Model. Simul., 4 (2005) 1091-1115.
[35]
A. Buades, B. Coll, J.M. Morel., A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005) 490-530.
[36]
I.K. Kwang, K. Younghee, Single-image super-resolution using sparse regression and natural image prior, IEEE Trans. Pattern Anal. Mach. Intell., 32 (2010) 1127-1133.
[37]
M.F. Tappen, B.C. Russel, W.T. Freeman. Exploiting the sparse derivative prior for super-resolution and image demosaicing, in: Proc. IEEE Workshop Statistical and Computational Theories of Vision, 2003.
[38]
B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, 381 (1996) 607-609.
[39]
D.L. Ruderman, W. Bialek, Statistics of natural images: scaling in the woods, Phys. Rev. Lett., 73 (1994) 814-817.
[40]
E.P. Simoncelli. Statistical models for images: compression, restoration and synthesis, in: 31st Asilomar Conference on Signals Systems, and Computers. Pacific Grove, CA, 1997, pp. 673-678.
[41]
E.P. Simoncelli, Bayesian denoising of visual images in the wavelet domain, Springer-Verlag, New York, 1999.
[42]
R.W. Buccigrossi, E.P. Simoncelli, Image compression via joint statistical characterization in the wavelet domain, IEEE Trans. Image Process, 8 (1999) 1688-1701.
[43]
J. Dias. Fast GEM wavelet-based image deconvolution algorithm, in: IEEE International Conference on Image Processing, 2003.
[44]
M. Figueiredo, R. Nowak Image restoration using the EM algorithm and wavelet-based complexity regularization, in: International Conference on Image Processing, 2002.
[45]
{http://adni.loni.usc.edu/}.
[46]
A. Alexande, K.T. John, Efficient and generalizable statistical models of shape and appearance for analysis of Cardiac MRI, Med. Image Anal., 12 (2008) 335-357.
[47]
J. Yang, A.F. Frangi, J.Y. Yang, D. Zhang, J. Zhong, KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition, IEEE Trans. Pattern Anal. Mach. Intell., 27 (2005) 230-244.
[48]
M. Irani, S. Peleg, Motion analysis for image enhancement: resolution, occlusion, and transparency, J. Visual Commun. Image Represent., 4 (1993) 324-335.
[49]
D. Capel, Image Mosaicing and Super-Resolution, Springer-Verlag, 2004.

Cited By

View all
  1. MR image super-resolution reconstruction using sparse representation, nonlocal similarity and sparse derivative prior

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Computers in Biology and Medicine
      Computers in Biology and Medicine  Volume 58, Issue C
      March 2015
      163 pages

      Publisher

      Pergamon Press, Inc.

      United States

      Publication History

      Published: 01 March 2015

      Author Tags

      1. Magnetic resonance imaging
      2. Nonlocal similarity
      3. Sparse derivative prior
      4. Sparse representation
      5. Super-resolution

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 23 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Multi-level feature extraction and reconstruction for 3D MRI image super-resolutionComputers in Biology and Medicine10.1016/j.compbiomed.2024.108151171:COnline publication date: 9-Jul-2024
      • (2022)An Optimized MRI Contrast Enhancement Scheme Using Cycle Generative Adversarial NetworkSN Computer Science10.1007/s42979-022-01261-33:5Online publication date: 13-Jul-2022
      • (2021)MR image reconstruction using densely connected residual convolutional networksComputers in Biology and Medicine10.1016/j.compbiomed.2021.105010139:COnline publication date: 1-Dec-2021
      • (2018)Sparse representation based single image super-resolution with low-rank constraint and nonlocal self-similarityMultimedia Tools and Applications10.1007/s11042-017-4399-177:2(1693-1714)Online publication date: 1-Jan-2018
      • (2017)Local up-sampling and morphological analysis of low-resolution magnetic resonance imagesNeurocomputing10.1016/j.neucom.2016.10.096265:C(42-56)Online publication date: 22-Nov-2017
      • (2017)Smoothed $$\ell _1$$ℓ1-regularization-based line search for sparse signal recoverySoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-016-2423-421:16(4813-4828)Online publication date: 1-Aug-2017

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media