Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Prioritizing alarms from sensor-based detection models in livestock production - A review on model performance and alarm reducing methods

Published: 01 February 2017 Publication History

Abstract

Sensor-based detection systems for decision support generate too many false alarms.Methods for reducing or prioritizing alarms are described and evaluated.Performance criteria based on sensitivity and specificity are not fulfilled.Three included papers present prioritizing strategies for reducing alarms.Alternative approaches for communicating alarms in future research are proposed. The objective of this review is to present, evaluate and discuss methods for reducing false alarms in sensor-based detection models developed for livestock production as described in the scientific literature. Papers included in this review are all peer-reviewed and present sensor-based detection models developed for modern livestock production with the purpose of optimizing animal health or managerial routines. The papers must present a performance for the model, but no criteria were specified for animal species or the condition sought to be detected. 34 papers published during the last 20years (19952015) are presented in three groups according to their level of prioritization: Sheer detection models based on single-standing methods with or without inclusion of non-sensor-based information (19 papers), Improved detection models where the performance of the described models are sought to be improved through the combination of different methods (12 papers) and Prioritizing models where the models include a method of ranking or prioritizing alerts in order to reduce the number of false alarms (3 papers). Of the three methods that rank or prioritize alerts; Fuzzy Logic, Naive Bayesian Network (NBN) and Hidden phase-type Markov model, the NBN shows the greatest potential for future reduction of alerts from sensor-based detection models in livestock production. The included detection models are evaluated on three criteria; performance, time-window and similarity to determine whether they are suitable for implementation in modern livestock production herds. No model fulfills all three criteria and only three models meet the performance criterion. Reasons for this could be that both sensor technology and methods for developing the detection models have evolved over time. However, model performance is almost exclusively presented by the binary epidemiological terms Sensitivity (Se) and Specificity (Sp). It is suggested that future research focus on alternative approaches for the output of detection models, such as the prior probability or the risk of a condition occurring. Automatic monitoring and early warning systems offer an opportunity to observe certain aspects of animal health, welfare, and productivity more closely than traditionally accomplished through human observation, and the opportunities for improving animal welfare should continue to be a driving force throughout the field of precision livestock farming.

References

[1]
C.E. Abell, A.K. Johnson, L.A. Karriker, M.F. Rothschild, S.J. Hoff, G. Sun, R.F. Fitzgerald, K.J. Stalder, Using classification trees to detect induced sow lameness with a transient model, Animal, 8 (2014) 1000-1009.
[2]
M. Alsaaod, C. Romer, J. Kleinmanns, K. Hendriksen, S. RoseMeierhofer, L. Plumer, W. Buscher, Electronic detection of lameness in dairy cows through measuring pedometric activity and lying behavior, Appl. Anim. Behav. Sci., 142 (2012) 134-141.
[3]
U. Aparna, L.J. Pedersen, E. Jorgensen, Hidden phase-type markov model for the prediction of onset of farrowing for loose-housed sows, Comp. Electron. Agricult., 108 (2014) 135-147.
[4]
H.W. Barkema, Y.H. Schukken, T.J.G.M. Lam, M.L. Beiboer, H. Wilmink, G. Benedictus, A. Brand, Incidence of clinical mastitis in dairy herds grouped in three categories by bulk milk somatic cell counts, J. Dairy Sci., 81 (1998) 411-419.
[5]
Daniel Beltrn-Alcrudo, Tim E. Carpenter, Carol Cardona, A flock-tailored early warning system for low pathogenic avian influenza (LPAI) in commercial egg laying flocks, Prevent. Veter. Med., 92 (2009) 324-332.
[6]
Salem Benferhat, Abdelhamid Boudjelida, Karim Tabia, Habiba Drias, An intrusion detection and alert correlation approach based on revising probabilistic classifiers using expert knowledge, Appl. Intell., 38 (2013) 520-540.
[7]
D. Berckmans, Precision livestock farming technologies for welfare management in intensive livestock systems (special issue: animal welfare: focusing on the future), Revue Scientifique et Technique - Office International des Epizooties, 33 (2014) 189-196.
[8]
C. Bono, C. Cornou, A.R. Kristensen, Dynamic production monitoring in pig herds i: modeling and monitoring litter size at herd and sow level, Livest. Sci., 149 (2012) 289-300.
[9]
C. Bono, C. Cornou, S. LundbyeChristensen, A.R. Kristensen, Dynamic production monitoring in pig herds ii. Modeling and monitoring farrowing rate at herd level, Livest. Sci., 155 (2013) 92-102.
[10]
C. Bono, C. Cornou, S. LundbyeChristensen, A.R. Kristensen, Dynamic production monitoring in pig herds iii. modeling and monitoring mortality rate at herd level, Livest. Sci., 168 (2014) 128-138.
[11]
Lydia Bouzar-Benlabiod, Salem Benferhat, Thouraya Bouabana-Tebibel, Instantiated first order qualitative choice logic for an efficient handling of alerts correlation, Intell. Data Anal., 19 (2015) 3-27.
[12]
H.P.M. Bressers, J.H.A. te Brake, M.B. Jansen, P.J. Nijenhuis, J.P.T.M. Noordhuizen, Monitoring individual sows: radiotelemetrically recorded ear base temperature changes around farrowing, Livest. Product. Sci., 37 (1994) 353-361.
[13]
H.P.M. Bressers, J.H.A. Te Brake, J.P.T.M. Noordhuizen, Automated oestrus detection in group-housed sows by recording visits to the boar, Livest. Product. Sci., 41 (1995) 183-191.
[14]
O. Cangar, T. Leroy, M. Guarino, E. Vranken, R. Fallon, J. Lenehan, J. Mee, D. Berckmans, Automatic real-time monitoring of locomotion and posture behaviour of pregnant cows prior to calving using online image analysis (special issue: Smart sensors in precision livestock farming), Comp. Electron. Agricult., 64 (2008) 53-60.
[15]
D. Cavero, K.H. Tolle, C. Buxade, J. Krieter, Mastitis detection in dairy cows by application of fuzzy logic, Livest. Sci., 105 (2006) 207-213.
[16]
D. Cavero, K.H. Tolle, G. Rave, C. Buxade, J. Krieter, Analysing serial data for mastitis detection by means of local regression, Livest. Sci., 110 (2007) 101-110.
[17]
M.G.G. Chagunda, N.C. Friggens, M.D. Rasmussen, T. Larsen, A model for detection of individual cow mastitis based on an indicator measured in milk, J. Dairy Sci., 89 (2006) 2980-2998.
[18]
N. Chapinal, A.M. de PassillT, D.M. Weary, M.A.G. von Keyserlingk, J. Rushen, Using gait score, walking speed, and lying behavior to detect hoof lesions in dairy cows, J. Dairy Sci., 92 (2009) 4365-4374.
[19]
R.W. Claycomb, P.T. Johnstone, G.A. Mein, R.A. Sherlock, An automated in-line clinical mastitis detection system using measurement of conductivity from foremilk of individual udder quarters, New Zeal. Veterin. J., 57 (2009) 208-214.
[20]
C. Cornou, A.R. Kristensen, Monitoring individual activity before, during and after parturition using sensors for sows with and without straw amendment, Livest. Sci., 168 (2014) 139-148.
[21]
C. Cornou, A.R. Kristensen, Monitoring individual activity before, during and after parturition using sensors for sows with and without straw amendment, Livest. Sci., 168 (2014) 139-148.
[22]
C. Cornou, S. Lundbye-Christensen, Classification of sows activity types from acceleration patterns using univariate and multivariate models, Comp. Electron. Agricult., 72 (2010) 53-60.
[23]
C. Cornou, S. Lundbye-Christensen, Modeling of sows diurnal activity pattern and detection of parturition using acceleration measurements, Comp. Electron. Agricult., 80 (2011) 97-104.
[24]
C. Cornou, J. Vinther, A.R. Kristensen, Automatic detection of oestrus and health disorders using data from electronic sow feeders, Livest. Sci., 118 (2008) 262-271.
[25]
C. Cornou, S. LundbyeChristensen, A.R. Kristensen, Modelling and monitoring sows activity types in farrowing house using acceleration data, Comp. Electron. Agricult., 76 (2011) 316-324.
[26]
R.M. de Mol, W. Ouweltjes, Detection model for mastitis in cows milked in an automatic milking system, Prevent. Veter. Med., 49 (2001) 71-82.
[27]
R.M. de Mol, W.E. Woldt, Application of fuzzy logic in automated cow status monitoring, J. Dairy Sci., 84 (2001).
[28]
R.M. de Mol, G.H. Kroeze, J.M.F.H. Achten, K. Maatje, W. Rossing, Results of a multivariate approach to automated oestrus and mastitis detection, Livest. Product. Sci., 48 (1997) 219-227.
[29]
R.M. de Mol, A. Keen, G.H. Kroeze, J.M.F.H. Achten, Description of a detection model for oestrus and diseases in dairy cattle based on time series analysis combined with a kalman filter, Comp. Electron. Agricult., 22 (1999) 171-185.
[30]
R.M. de Mol, W. Ouweltjes, G.H. Kroeze, M.M.W.B. Hendriks, Detection of oestrus and mastitis: field performance of a model, Appl. Eng. Agricult., 17 (2001) 399-407.
[31]
R.M. de Mol, G. Andre, E.J.B. Bleumer, J.T.N. van der Werf, Y. de Haas, C.G. Reenen, Applicability of day-to-day variation in behavior for the automated detection of lameness in dairy cows, J. Dairy Sci., 96 (2013) 3703-3712.
[32]
H.A. Deluyker, R.H. Shumway, W.E. Wecker, A.S. Azari, L.D. Weaver, Modeling daily milk yield in holstein cows using time series analysis, J. Dairy Sci., 73 (1990) 539-548.
[33]
R. Dutta, D. Smith, R. Rawnsley, G. BishopHurley, J. Hills, G. Timms, D. Henry, Dynamic cattle behavioural classification using supervised ensemble classifiers, Comp. Electron. Agricult., 111 (2015) 18-28.
[34]
S. Ferrari, R. Piccinini, M. Silva, V. Exadaktylos, D. Berckmans, M. Guarino, Cough sound description in relation to respiratory diseases in dairy calves, Prevent. Veter. Med., 96 (2010) 276-280.
[35]
R. Firk, E. Stamer, W. Junge, J. Krieter, Automation of oestrus detection in dairy cows: a review, Livest. Product. Sci., 75 (2002) 219-232.
[36]
L. Freson, S. Godrie, N. Bos, J. Jourquin, R. Geers, Validation of an infra-red sensor for oestrus detection of individually housed sows, Comp. Electron. Agricult., 20 (1998) 21-29.
[37]
N.C. Friggens, M.G.G. Chagunda, M. Bjerring, C. Ridder, S. Hojsgaard, T. Larsen, Estimating degree of mastitis from time-series measurements in milk: a test of a model based on lactate dehydrogenase measurements, J. Dairy Sci., 90 (2007) 5415-5427.
[38]
N.C. Friggens, M.C. Codrea, S. Hojsgaard, Extracting biologically meaningful features from time-series measurements of individual animals: towards quantitative description of animal status, in: 7th International Workshop on Modelling Nutrient Digestion and Utilisation in Farm Animals, Wageningen, 1012 September, 2009, Wageningen Academic Publishers, 2010, pp. 40-48.
[39]
E. Garcia, I. Klaas, J.M. Amigo, R. Bro, C. Enevoldsen, Lameness detection challenges in automated milking systems addressed with partial least squares discriminant analysis, J. Dairy Sci., 97 (2014) 7476-7486.
[40]
G. Hoffmann, C. Ammon, L. Volkamer, C. Surie, D. Radko, Sensor-based monitoring of the prevalence and severity of foot pad dermatitis in broiler chickens, Brit. Poul. Sci., 54 (2013) 553-561.
[41]
H. Hogeveen, C. Kamphuis, W. Steeneveld, H. Mollenhorst, Sensors and clinical mastitis - the quest for the perfect alert, Sensors, 10 (2010) 7991-8009.
[42]
S. Hojsgaard, N.C. Friggens, Quantifying degree of mastitis from common trends in a panel of indicators for mastitis in dairy cows, J. Dairy Sci., 93 (2010) 582-592.
[43]
B. Hothersall, G. Caplen, R.M.A. Parker, C.J. Nicol, A.E. WatermanPearson, C.A. Weeks, J.C. Murrell, Thermal nociceptive threshold testing detects altered sensory processing in broiler chickens with spontaneous lameness, PLoS One, 9 (2014).
[44]
K. Huijps, H. Hogeveen, G. Antonides, N.I. Valeeva, T.J.G.M. Lam, A.G.J.M.O. Lansink, Sub-optimal economic behaviour with respect to mastitis management, Euro. Rev. Agricult. Econ., 37 (2010) 553-568.
[45]
T. Huybrechts, K. Mertens, J. De Baerdemaeker, B. De Ketelaere, W. Saeys, Early warnings from automatic milk yield monitoring with online synergistic control, J. Dairy Sci., 97 (2014) 3371-3381.
[46]
Dan B. Jensen, Henk Hogeveen, Albert De Vries, Bayesian integration of sensor information and a multivariate dynamic linear model for prediction of dairy cow mastitis, J. Dairy Sci., 99 (2016) 7344-7361.
[47]
M. Junge, D. Herd, D. Jezierny, E. Gallmann, T. Jungbluth, Water intake and drinking behavior of pregnant sows, in: The Ninth International Livestock Environment Symposium (ILES IX). International Conference of Agricultural Engineering - CIGR-AgEng 2012: Agriculture and Engineering for a Healthier Life, Valencia, 812 July 2012, Livestock Systems Engineering, Institute of Agricultural Engineering, University of Hohenheim, Garbenstrasse 9, 70593 Stuttgart, Germany, 2012.
[48]
C. Kamphuis, D. Pietersma, R. van der Tol, M. Wiedemann, H. Hogeveen, Using sensor data patterns from an automatic milking system to develop predictive variables for classifying clinical mastitis and abnormal milk, Comp. Electron. Agricult., 62 (2008) 169-181.
[49]
C. Kamphuis, R. Sherlock, J. Jago, G. Mein, H. Hogeveen, Automatic detection of clinical mastitis is improved by in-line monitoring of somatic cell count, J. Dairy Sci., 91 (2008) 4560-4570.
[50]
C. Kamphuis, H. Mollenhorst, A. Feelders, D. Pietersma, H. Hogeveen, Decision-tree induction to detect clinical mastitis with automatic milking, Comp. Electron. Agricult., 70 (2010) 60-68.
[51]
C. Kamphuis, H. Mollenhorst, J.A.P. Heesterbeek, H. Hogeveen, Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction, J. Dairy Sci., 93 (2010) 3616-3627.
[52]
C. Kamphuis, E. Frank, J.K. Burke, G.A. Verkerk, J.G. Jago, Applying additive logistic regression to data derived from sensors monitoring behavioral and physiological characteristics of dairy cows to detect lameness, J. Dairy Sci., 96 (2013) 7043-7053.
[53]
M. Kashiha, C. Bahr, S.A. Haredasht, S. Ott, C.P.H. Moons, T.A. Niewold, F.O. Odberg, D. Berckmans, The automatic monitoring of pigs water use by cameras, Comp. Electron. Agricult., 90 (2013) 164-169.
[54]
M. Kashiha, C. Bahr, S. Ott, C.P.H. Moons, T.A. Niewold, F.O. Odberg, D. Berckmans, Automatic weight estimation of individual pigs using image analysis, Comp. Electron. Agricult., 107 (2014) 38-44.
[55]
George J. Klir, Tina A. Folger, Fuzzy Sets, Uncertainty, and Information, Prentice Hall, 1988.
[56]
E. Kramer, D. Cavero, E. Stamer, J. Krieter, Mastitis and lameness detection in dairy cows by application of fuzzy logic, Livest. Sci., 125 (2009) 92-96.
[57]
A.R. Kristensen, E. Jrgensen, N. Toft, Herd Management Science. I. Basic concepts, Academic books, Copenhagen, 2010.
[58]
Helle H. Kristensen, CTcile Cornou, Automatic detection of deviations in activity levels in groups of broiler chickens a pilot study, Biosyst. Eng., 109 (2011) 369-376.
[59]
T. Leroy, F. Borgonovo, A. Costa, J.M. Aerts, M. Guarino, D. Berckmans, Real-time measurement of pig activity in practical conditions, in: Central Theme, Technology For All: Sharing the Knowledge for Development. Proceedings of the International Conference of Agricultural Engineering, XXXVII Brazilian Congress of Agricultural Engineering, International Livestock Environment Symposium ILES VIII, Iguassu Falls City, Bonn, 31st August to 4th September, 2008, International Commission of Agricultural Engineering (CIGR), Institut fur Landtechnik, 2008.
[60]
J. Liu, N.K. Neerchal, U. Tasch, R.M. Dyer, P.G. Rajkondawar, Enhancing the prediction accuracy of bovine lameness models through transformations of limb movement variables, J. Dairy Sci., 92 (2009) 2539-2550.
[61]
J.M. Lukas, J.K. Reneau, R. Wallace, D. Hawkins, C. Munoz-Zanzi, A novel method of analyzing daily milk production and electrical conductivity to predict disease onset, J. Dairy Sci., 92 (2009) 5964-5976.
[62]
K. Maatje, R.M. de Mol, W. Rossing, Cow status monitoring (health and oestrus) using detection sensors, Comp. Electron. Agricult., 16 (1997) 245-254.
[63]
T.N. Madsen, A.R. Kristensen, A model for monitoring the condition of young pigs by their drinking behaviour, Comp. Electron. Agricult., 48 (2005) 138-154.
[64]
T.N. Madsen, S. Andersen, A.R. Kristensen, Modelling the drinking patterns of young pigs using a state space model, Comp. Electron. Agricult., 48 (2005) 39-62.
[65]
T.N. Madsen, S. Andersen, A.R. Kristensen, Modelling the drinking patterns of young pigs using a state space model, Comp. Electron. Agricult., 48 (2005) 39-62.
[66]
Willem Maertens, Jnrgen Vangeyte, Jeroen Baert, Alexandru Jantuan, Koen C. Mertens, Sam De Campeneere, Arno Pluk, Geert Opsomer, Stephanie Van Weyenberg, Annelies Van Nuffel, Development of a real time cow gait tracking and analysing tool to assess lameness using a pressure sensitive walkway: the gaitwise system, Biosyst. Eng., 110 (2011) 29-39.
[67]
S. Abdanan Mehdizadeh, D.P. Neves, M. Tscharke, I.A. NSSs, T.M. Banhazi, Image analysis method to evaluate beak and head motion of broiler chickens during feeding, Comp. Electron. Agricult., 114 (2015) 88-95.
[68]
E. Meijer, M. Oosterlinck, A. van Nes, W. Back, F.J. Staay, Pressure mat analysis of naturally occurring lameness in young pigs after weaning, BMC Veter. Res., 10 (2014).
[69]
G.A. Mein, M.D. Rasmussen, Performance evaluation of systems for automated monitoring of udder health: would the real gold standard please stand up?, in: Mastitis Control: From Science to Practice. Proceedings of International Conference, Wageningen, 30 September - 2 October 2008, Sensortec Ltd, Hamilton, New Zealand, 2008.
[70]
B. Miekley, I. Traulsen, J. Krieter, Detection of mastitis and lameness in dairy cows using wavelet analysis, Livest. Sci., 148 (2012) 227-236.
[71]
B. Miekley, E. Stamer, I. Traulsen, J. Krieter, Implementation of multivariate cumulative sum control charts in mastitis and lameness monitoring, J. Dairy Sci., 96 (2013) 5723-5733.
[72]
B. Miekley, I. Traulsen, J. Krieter, Principal component analysis for the early detection of mastitis and lameness in dairy cows, J. Dairy Res., 80 (2013) 335-343.
[73]
P. Milner, K.L. Page, A.W. Walton, J.E. Hillerton, Detection of clinical mastitis by changes in electrical conductivity of foremilk before visible changes in milk, J. Dairy Sci., 79 (1996) 83-86.
[74]
C.M. Mohling, A.K. Johnson, J.F. Coetzee, L.A. Karriker, C.E. Abell, S.T. Millman, K.J. Stalder, Kinematics as objective tools to evaluate lameness phases in multiparous sows, Livest. Sci., 165 (2014) 120-128.
[75]
H. Mollenhorst, L.J. Rijkaart, H. Hogeveen, Mastitis alert preferences of farmers milking with automatic milking systems, J. Dairy Sci., 95 (2012) 2523-2530.
[76]
D. Moshou, A. Chedad, A. van Hirtum, J. de Baerdemaeker, D. Berckmans, H. Ramon, An intelligent alarm for early detection of swine epidemics based on neural networks, Trans. ASAE, 44 (2001).
[77]
L.R. Nielsen, A.R. Pedersen, M.S. Herskin, L. Munksgaard, Quantifying walking and standing behaviour of dairy cows using a moving average based on output from an accelerometer, Appl. Anim. Behav. Sci., 127 (2010) 12-19.
[78]
N.I. Nielsen, N.C. Friggens, M.G.G. Chagunda, K.L. Ingvartsen, Predicting risk of ketosis in dairy cows using in-line measurements of beta-hydroxybutyrate: a biological model, J. Dairy Sci., 88 (2005) 2441-2453.
[79]
A. Van Nuffel, J. Vangeyte, K.C. Mertens, L. Pluym, S. De Campeneere, W. Saeys, G. Opsomer, S. Van Weyenberg, Exploration of measurement variation of gait variables for early lameness detection in cattle using the gaitwise, Livest. Sci., 156 (2013) 88-95.
[80]
C. Oliviero, M. Pastell, M. Heinonen, J. Heikkonen, A. Valros, J. Ahokas, O. Vainio, O.A.T. Peltoniemi, Using movement sensors to detect the onset of farrowing, Biosyst. Eng., 100 (2008) 281-285.
[81]
T. Ostersen, C. Cornou, A.R. Kristensen, Detecting oestrus by monitoring sows visits to a boar, Comp. Electron. Agricult., 74 (2010) 51-58.
[82]
M. Pastell, M. Hautala, V. Poikalainen, J. Praks, I. VeermSe, M. Kujala, J. Ahokas, Automatic observation of cow leg health using load sensors, Comp. Electron. Agricult., 62 (2008) 48-53.
[83]
M. Pastell, M. Kujala, A.M. Aisla, M. Hautala, V. Poikalainen, J. Praks, I. Veermae, J. Ahokas, Detecting cows lameness using force sensors. (special issue: Smart sensors in precision livestock farming.), Comp. Electron. Agricult., 64 (2008) 34-38.
[84]
M.E. Pastell, M. Kujala, A probabilistic neural network model for lameness detection, J. Dairy Sci., 90 (2007) 2283-2292.
[85]
Matti Pastell, Henrik Madsen, Application of cusum charts to detect lameness in a milking robot, Exp. Syst. Appl., 35 (2008) 2032-2040.
[86]
A. Pluk, C. Bahr, A. Poursaberi, W. Maertens, A. van Nuffel, D. Berckmans, Automatic measurement of touch and release angles of the fetlock joint for lameness detection in dairy cattle using vision techniques, J. Dairy Sci., 95 (2012) 1738-1748.
[87]
Liesbet M. Pluym, Dominiek Maes, Jnrgen Vangeyte, Koen Mertens, Jeroen Baert, Stephanie Van Weyenberg, Sam Millet, Annelies Van Nuffel, Development of a system for automatic measurements of force and visual stance variables for objective lameness detection in sows: Sowsis, Biosyst. Eng., 116 (2013) 64-74.
[88]
S.M.C. Porto, C. Arcidiacono, A. Giummarra, U. Anguzza, G. Cascone, Localisation and identification performances of a real-time location system based on ultra wide band technology for monitoring and tracking dairy cow behaviour in a semi-open free-stall barn, Comp. Electron. Agricult., 108 (2014) 221-229.
[89]
W.F. Quimby, B.F. Sowell, J.G.P. Bowman, M.E. Branine, M.E. Hubbert, H.W. Sherwood, Application of feeding behaviour to predict morbidity of newly received calves in a commercial feedlot, Can. J. Anim. Sci., 81 (2001) 315-320.
[90]
P.G. Rajkondawar, U. Tasch, A.M. Lefcourt, B. Erez, R.M. Dyer, M.A. Varner, A system for identifying lameness in dairy cattle, Appl. Eng. Agricult., 18 (2002) 87-96.
[91]
P.G. Rajkondawar, M. Liu, R.M. Dyer, N.K. Neerchal, U. Tasch, A.M. Lefcourt, B. Erez, M.A. Varner, Comparison of models to identify lame cows based on gait and lesion scores, and limb movement variables, J. Dairy Sci., 89 (2006) 4267-4275.
[92]
M.D. Rasmussen, Defining acceptable milk quality at time of milking, in: First North American Conference on robotic milking, Wageningen, 2022 March, 2002, Danish Institute of Agricultural Sciences, Foulum, DK-8830 Tjele, Denmark, 2002.
[93]
M.D. Rasmussen, Visual scoring of clots in foremilk, J. Dairy Res., 72 (2005) 406-414.
[94]
M.D. Rasmussen, M. Bjerring, Detection of clinical mastitis in automatic milking systems, ICAR Tech. Ser. (2005) 117-121.
[95]
C.J. Rutten, A.G.J. Velthuis, W. Steeneveld, H. Hogeveen, Invited review: sensors to support health management on dairy farms, J. Dairy Sci., 96 (2013) 1928-1952.
[96]
C.J. Rutten, W. Steeneveld, C. Inchaisri, H. Hogeveen, An ex ante analysis on the use of activity meters for automated estrus detection: to invest or not to invest?, J. Dairy Sci., 97 (2014) 6869-6887.
[97]
R. Sherlock, H. Hogeveen, G. Mein, M. Rasmussen, Performance evaluation of systems for automated monitoring of udder health: analytical issues and guidelines, in: Mastitis Control: From Science to Practice. Proceedings of International Conference, Wageningen, 30 September2 October 2008, SmartWork Systems Ltd, Christchurch, New Zealand, 2008.
[98]
C.G. Sorensen, S. Fountas, E. Nash, L. Pesonen, D. Bochtis, S.M. Pedersen, B. Basso, S.B. Blackmore, Conceptual model of a future farm management information system, Comp. Electron. Agricult., 72 (2010) 37-47.
[99]
W. Steeneveld, H. Hogeveen, H.W. Barkema, J. van den Broek, R.B.M. Huirne, The influence of cow factors on the incidence of clinical mastitis in dairy cows, J. Dairy Sci., 91 (2008) 1391-1402.
[100]
W. Steeneveld, L.C. van der Gaag, H.W. Barkema, H. Hogeveen, Providing probability distributions for the causal pathogen of clinical mastitis using naive bayesian networks, J. Dairy Sci., 92 (2009) 2598-2609.
[101]
W. Steeneveld, L.C. van der Gaag, W. Ouweltjes, H. Mollenhorst, H. Hogeveen, Discriminating between true-positive and false-positive clinical mastitis alerts from automatic milking systems, J. Dairy Sci., 93 (2010) 2559-2568.
[102]
W. Steeneveld, L.C. van der Gaag, H.W. Barkema, H. Hogeveen, Simplify the interpretation of alert lists for clinical mastitis in automatic milking systems, Comp. Electron. Agricult., 71 (2010) 50-56.
[103]
H. Tanida, Y. Koba, J. Rushen, A.M. Passile, Use of three-dimensional acceleration sensing to assess dairy cow gait and the effects of hoof trimming, Anim. Sci. J., 82 (2011) 792-800.
[104]
A.S. Tello, C. Lokhorst, T. van Hertem, I. Halachmi, E. Maltz, A. Voros, C.E.B. Romanini, S. Viazzi, C. Bahr, P.W.G.G. Koerkamp, D. Berckmans, Selection of a golden standard for visual-based automatic lameness detection for dairy cows, in: Animal Hygiene and Sustainable Livestock Production. Proceedings of the XVth International Congress of the International Society for Animal Hygiene, Brno, 37 July 2011, Wageningen UR Livestock Research, Lelystad, Netherlands, 2011.
[105]
S.P. Turner, A.G. Sinclair, S.A. Edwards, The interaction of liveweight and the degree of competition on drinking behaviour in growing pigs at different group sizes, Appl. Anim. Behav. Sci., 67 (2000) 321-334.
[106]
T. van Hertem, E. Maltz, A. Antler, C.E.B. Romanini, S. Viazzi, C. Bahr, A. SchlageterTello, C. Lokhorst, D. Berckmans, I. Halachmi, Lameness detection based on multivariate continuous sensing of milk yield, rumination, and neck activity, J. Dairy Sci., 96 (2013) 4286-4298.
[107]
T. van Hertem, S. Viazzi, M. Steensels, E. Maltz, A. Antler, V. Alchanatis, A.A. SchlageterTello, K. Lokhorst, E.C.B. Romanini, C. Bahr, D. Berckmans, I. Halachmi, Automatic lameness detection based on consecutive 3d-video recordings, Biosyst. Eng. (2014).
[108]
S. Viazzi, C. Bahr, A. Schlageter-Tello, T. Van Hertem, C.E.B. Romanini, A. Pluk, I. Halachmi, C. Lokhorst, D. Berckmans, Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle, J. Dairy Sci., 96 (2013) 257-266.
[109]
R.P. White, C.P. Schofield, D.M. Green, D.J. Parsons, C.T. Whittemore, The effectiveness of a visual image analysis (via) system for monitoring the performance of growing/finishing pigs, Anim. Sci., 78 (2004) 409-418.
[110]
I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, Elsevier, 2005.
[111]
S. Wood, Y. Lin, T.G. Knowles, D.C.J. Main, Infrared thermometry for lesion monitoring in cattle lameness, Veter. Rec., 176 (2015) 308.
[112]
Song XiangYu, T. Leroy, E. Vranken, W. Maertens, B. Sonck, D. Berckmans, Automatic detection of lameness in dairy cattle - vision-based trackway analysis in cows locomotion (special issue: Smart sensors in precision livestock farming), Comp. Electron. Agricult., 64 (2008) 39-44.

Cited By

View all
  • (2024)Quantifying the economic and animal welfare trade-offs of classification models in precision livestock farming for sub-optimal mobility managementComputers and Electronics in Agriculture10.1016/j.compag.2024.108767219:COnline publication date: 1-Apr-2024
  • (2024)Real-time automatic integrated monitoring of barn environment and dairy cattle behaviourComputers and Electronics in Agriculture10.1016/j.compag.2023.108499216:COnline publication date: 12-Apr-2024
  • (2024)Prediction of tail biting in pigs using partial least squares regression and artificial neural networksComputers and Electronics in Agriculture10.1016/j.compag.2023.108477216:COnline publication date: 12-Apr-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computers and Electronics in Agriculture
Computers and Electronics in Agriculture  Volume 133, Issue C
February 2017
131 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 February 2017

Author Tags

  1. Automatic monitoring
  2. Early warning system
  3. Livestock production
  4. Performance
  5. Sensitivity
  6. Sensor
  7. Specificity

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Quantifying the economic and animal welfare trade-offs of classification models in precision livestock farming for sub-optimal mobility managementComputers and Electronics in Agriculture10.1016/j.compag.2024.108767219:COnline publication date: 1-Apr-2024
  • (2024)Real-time automatic integrated monitoring of barn environment and dairy cattle behaviourComputers and Electronics in Agriculture10.1016/j.compag.2023.108499216:COnline publication date: 12-Apr-2024
  • (2024)Prediction of tail biting in pigs using partial least squares regression and artificial neural networksComputers and Electronics in Agriculture10.1016/j.compag.2023.108477216:COnline publication date: 12-Apr-2024
  • (2022)Energy‐aware cluster‐based routing optimization for WSNs in the livestock industryTransactions on Emerging Telecommunications Technologies10.1002/ett.381633:3Online publication date: 21-Mar-2022
  • (2021)Cardinality-regularized hawkes-granger modelProceedings of the 35th International Conference on Neural Information Processing Systems10.5555/3540261.3540466(2682-2694)Online publication date: 6-Dec-2021
  • (2021)AnankeProceedings of the VLDB Endowment10.14778/3430915.343092814:3(391-403)Online publication date: 9-Dec-2021
  • (2020)A machine learning based decision aid for lameness in dairy herds using farm-based recordsComputers and Electronics in Agriculture10.1016/j.compag.2019.105193169:COnline publication date: 1-Feb-2020
  • (2019)Opportunities for ACI in PLFProceedings of the Sixth International Conference on Animal-Computer Interaction10.1145/3371049.3371055(1-6)Online publication date: 12-Nov-2019

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media