Nothing Special   »   [go: up one dir, main page]

skip to main content
short-survey

Physically-consistent EM models-aware RIS-aided communication — A survey

Published: 20 February 2025 Publication History

Abstract

The rapid development of reconfigurable intelligent surfaces (RISs) has sparked transformative advancements in wireless communication systems. These intelligent metasurfaces, adept at dynamically manipulating electromagnetic (EM) waves, hold vast potential for enhancing network capacity, coverage, and efficiency. However, to fully unleash the capabilities of RIS-aided communication systems, effective optimization is crucial. This article provides a recent development of RIS-assisted communication from the viewpoint of physically-consistent EM models. We delve into the realm of physically-consistent EM models, highlighting their pivotal role in achieving robust and efficient RIS designs. Furthermore, this paper offers a survey of the different optimization models utilized for RIS-assisted wireless communication systems, which consider various EM and physical aspects of RIS. We explore solution approaches aimed at optimizing different objectives like sum-rate/spectral efficiency and energy efficiency, spanning traditional optimization models to machine learning-based methods. Additionally, we discuss some open research issues in this field.

References

[1]
Ahmad A.A. Solyman, Khalid Yahya, Key performance requirement of future next wireless networks (6G), Bull. Electr. Eng. Inform. 10 (6) (2021) 3249–3255.
[2]
Keysight Technologies, Next-Generation Wireless: A Guide to the Fundamentals of 6G, Keysight Technologies, USA, 2023, June 13, 2023, 1–39.
[3]
Walid Saad, Mehdi Bennis, Mingzhe Chen, A vision of 6G wireless systems: Applications, trends, technologies, and open research problems, IEEE Netw. 34 (3) (2019) 134–142.
[4]
Samaneh Bidabadi, Messaoud Ahmed Ouameur, Miloud Bagaa, Daniel Massicotte, Energy efficient resource allocation for re-configurable intelligent surface-assisted wireless networks, EURASIP J. Wireless Commun. Networking 2023 (1) (2023) 1–22.
[5]
Qingqing Wu, Beixiong Zheng, Changsheng You, Lipeng Zhu, Kaiming Shen, Xiaodan Shao, Weidong Mei, Boya Di, Hongliang Zhang, Ertugrul Basar, Lingyang Song, Marco Di Renzo, Zhi-Quan Luo, Rui Zhang, Intelligent surfaces empowered wireless network: Recent advances and the road to 6G, 2024, URL https://arxiv.org/abs/2312.16918.
[6]
Moazzam Shah Bukhari Syed, Hafiz Muhammad Attaullah, Sundus Ali, Muhammad Imran Aslam, Wireless communications beyond antennas: The role of reconfigurable intelligent surfaces, Eng. Proc. 32 (1) (2023) 10.
[7]
Xiaodan Shao, Changsheng You, Rui Zhang, Intelligent reflecting surface aided wireless sensing: Applications and design issues, 2023, arXiv preprint arXiv:2302.05864.
[8]
Yuanwei Liu, Xiao Liu, Xidong Mu, Tianwei Hou, Jiaqi Xu, Marco Di Renzo, Naofal Al-Dhahir, Reconfigurable intelligent surfaces: Principles and opportunities, IEEE Commun. Surv. Tutor. 23 (3) (2021) 1546–1577.
[9]
Shimin Gong, Xiao Lu, Dinh Thai Hoang, Dusit Niyato, Lei Shu, Dong In Kim, Ying-Chang Liang, Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey, IEEE Commun. Surv. Tutor. 22 (4) (2020) 2283–2314,.
[10]
Ertugrul Basar, Marco Di Renzo, Julien de Rosny, Merouane Debbah, Mohamed-Slim Alouini, Rui Zhang, Wireless communications through reconfigurable intelligent surfaces, 2019.
[11]
Xiaojun Yuan, Ying-Jun Angela Zhang, Yuanming Shi, Wenjing Yan, Hang Liu, Reconfigurable-intelligent-surface empowered wireless communications: Challenges and opportunities, IEEE Wirel. Commun. 28 (2) (2021) 136–143.
[12]
Marco Di Renzo, Alessio Zappone, Merouane Debbah, Mohamed-Slim Alouini, Chau Yuen, Julien De Rosny, Sergei Tretyakov, Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead, IEEE J. Sel. Areas Commun. 38 (11) (2020) 2450–2525.
[13]
Yuanwei Liu, Xiao Liu, Xidong Mu, Tianwei Hou, Jiaqi Xu, Marco Di Renzo, Naofal Al-Dhahir, Reconfigurable intelligent surfaces: Principles and opportunities, IEEE Commun. Surv. Tutor. 23 (3) (2021) 1546–1577,.
[14]
George C. Alexandropoulos, Geoffroy Lerosey, Merouane Debbah, Mathias Fink, Reconfigurable intelligent surfaces and metamaterials: The potential of wave propagation control for 6G wireless communications, 2020.
[15]
Christopher L. Holloway, Edward F. Kuester, Joshua A. Gordon, John O’Hara, Jim Booth, David R. Smith, An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag. 54 (2) (2012) 10–35,.
[16]
Syed S. Bukhari, J. Vardaxoglou, William Whittow, A metasurfaces review: Definitions and applications, Appl. Sci. 9 (13) (2019) 2727.
[17]
Mayurkumar Ladumor, Shreyas Charola, Shobhit K. Patel, Vigneswaran Dhasarathan, Graphene-based c-shaped metasurface broadband solar absorber, Physics and Simulation of Optoelectronic Devices XXVIII, vol. 11274, SPIE, 2020, pp. 7–12.
[18]
Adnan Ali, Anirban Mitra, Brahim Aïssa, Metamaterials and metasurfaces: A review from the perspectives of materials, mechanisms and advanced metadevices, Nanomaterials 12 (6) (2022) 1027.
[19]
Zhuqi Li, Yaxiong Xie, Longfei Shangguan, R. Ivan Zelaya, Jeremy Gummeson, Wenjun Hu, Kyle Jamieson, Programmable radio environments with large arrays of inexpensive antennas, GetMobile: Mob. Comput. Commun. 23 (3) (2020) 23–27.
[20]
Chongwen Huang, Sha Hu, George C. Alexandropoulos, Alessio Zappone, Chau Yuen, Rui Zhang, Marco Di Renzo, Merouane Debbah, Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends, IEEE Wirel. Commun. 27 (5) (2020) 118–125.
[21]
Marco Di Renzo, Konstantinos Ntontin, Jian Song, Fadil H. Danufane, Xuewen Qian, Fotis Lazarakis, Julien De Rosny, Dinh-Thuy Phan-Huy, Osvaldo Simeone, Rui Zhang, et al., Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison, IEEE Open J. Commun. Soc. 1 (2020) 798–807.
[22]
Marco Di Renzo, Alessio Zappone, Merouane Debbah, Mohamed-Slim Alouini, Chau Yuen, Julien de Rosny, Sergei Tretyakov, Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and road ahead, 2020.
[23]
Haris Gacanin, Marco Di Renzo, Wireless 2.0: Toward an intelligent radio environment empowered by reconfigurable meta-surfaces and artificial intelligence, IEEE Veh. Technol. Mag. 15 (4) (2020) 74–82,.
[24]
Qingqing Wu, Rui Zhang, Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network, IEEE Commun. Mag. 58 (1) (2019) 106–112.
[25]
Cunhua Pan, Hong Ren, Kezhi Wang, Jonas Florentin Kolb, Maged Elkashlan, Ming Chen, Marco Di Renzo, Yang Hao, Jiangzhou Wang, A. Lee Swindlehurst, et al., Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions, IEEE Commun. Mag. 59 (6) (2021) 14–20.
[26]
Saber Hassouna, Muhammad Ali Jamshed, James Rains, Jalil ur Rehman Kazim, Masood Ur Rehman, Mohammad Abualhayja, Lina Mohjazi, Tei Jun Cui, Muhammad Ali Imran, Qammer H Abbasi, A survey on reconfigurable intelligent surfaces: Wireless communication perspective, IET Commun. 17 (5) (2023) 497–537.
[27]
Ana Díaz-Rubio, Sergei A. Tretyakov, Macroscopic modeling of anomalously reflecting metasurfaces: Angular response and far-field scattering, IEEE Trans. Antennas and Propagation 69 (10) (2021) 6560–6571,.
[28]
Özgecan Özdogan, Emil Björnson, Erik G. Larsson, Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling, IEEE Wirel. Commun. Lett. 9 (5) (2020) 581–585,.
[29]
Davide Dardari, Communicating with large intelligent surfaces: Fundamental limits and models, IEEE J. Sel. Areas Commun. 38 (11) (2020) 2526–2537,.
[30]
Nandana Rajatheva, Italo Atzeni, Simon Bicais, Emil Bjornson, Andre Bourdoux, Stefano Buzzi, Carmen D’Andrea, Jean-Baptiste Dore, Serhat Erkucuk, Manuel Fuentes, Ke Guan, Yuzhou Hu, Xiaojing Huang, Jari Hulkkonen, Josep Miquel Jornet, Marcos Katz, Behrooz Makki, Rickard Nilsson, Erdal Panayirci, Khaled Rabie, Nuwanthika Rajapaksha, MohammadJavad Salehi, Hadi Sarieddeen, Shahriar Shahabuddin, Tommy Svensson, Oskari Tervo, Antti Tolli, Qingqing Wu, Wen Xu, Scoring the terabit/s goal:Broadband connectivity in 6G, 2021, URL https://arxiv.org/abs/2008.07220.
[31]
K.M. Faisal, Wooyeol Choi, Machine learning approaches for reconfigurable intelligent surfaces: A survey, IEEE Access 10 (2022) 27343–27367.
[32]
Hao Zhou, Melike Erol-Kantarci, Yuanwei Liu, H Vincent Poor, A survey on model-based, heuristic, and machine learning optimization approaches in RIS-aided wireless networks, 2023, arXiv preprint arXiv:2303.14320.
[33]
Annisa Anggun Puspitasari, Byung Moo Lee, A survey on reinforcement learning for reconfigurable intelligent surfaces in wireless communications, Sensors 23 (5) (2023) 2554.
[34]
Hao Zhou, Melike Erol-Kantarci, Yuanwei Liu, H. Vincent Poor, Heuristic algorithms for RIS-assisted wireless networks: Exploring heuristic-aided machine learning, 2023, arXiv preprint arXiv:2307.01205.
[35]
Sree Krishna Das, Fatma Benkhelifa, Yao Sun, Hanaa Abumarshoud, Qammer H. Abbasi, Muhammad Ali Imran, Lina Mohjazi, Comprehensive review on ML-based RIS-enhanced IoT systems: basics, research progress and future challenges, Comput. Netw. 224 (2023).
[36]
Zongze Li, Shuai Wang, Qingfeng Lin, Yang Li, Miaowen Wen, Yik-Chung Wu, H. Vincent Poor, Phase shift design in RIS empowered wireless networks: from optimization to AI-based methods, Network 2 (3) (2022) 398–418.
[37]
Mohammad Abrar Shakil Sejan, Md Habibur Rahman, Beom-Sik Shin, Ji-Hye Oh, Young-Hwan You, Hyoung-Kyu Song, Machine learning for intelligent-reflecting-surface-based wireless communication towards 6G: A review, Sensors 22 (14) (2022) 5405.
[38]
Marco Di Renzo, Fadil H. Danufane, Sergei Tretyakov, Communication models for reconfigurable intelligent surfaces: From surface electromagnetics to wireless networks optimization, Proc. IEEE 110 (9) (2022) 1164–1209.
[39]
Muhammad Zain Siddiqi, Talha Mir, Reconfigurable intelligent surface-aided wireless communications: An overview, Intell. Converged Netw. 3 (1) (2022) 33–63,.
[40]
Manzoor Ahmed, Abdul Wahid, Sayed Shariq Laique, Wali Ullah Khan, Asim Ihsan, Fang Xu, Symeon Chatzinotas, Zhu Han, A survey on STAR-RIS: Use cases, recent advances, and future research challenges, IEEE Internet Things J. 10 (16) (2023) 14689–14711,.
[41]
Manzoor Ahmed, Salman Raza, Aized Amin Soofi, Feroz Khan, Wali Ullah Khan, Syed Zain Ul Abideen, Fang Xu, Zhu Han, Active reconfigurable intelligent surfaces: Expanding the frontiers of wireless communication-a survey, IEEE Commun. Surv. Tutor. (2024).
[42]
Kinza Shafique, Mohammad Alhassoun, Going beyond a simple RIS: Trends and techniques paving the path of future RIS, IEEE Open J. Antennas Propag. 5 (2) (2024) 256–276,.
[43]
Filippo Costa, Michele Borgese, Electromagnetic model of reflective intelligent surfaces, IEEE Open J. Commun. Soc. 2 (2021) 1577–1589,.
[44]
Jieao Zhu, Zhongzhichao Wan, Linglong Dai, Mérouane Debbah, H. Vincent Poor, Electromagnetic information theory: Fundamentals, modeling, applications, and open problems, 2022, arXiv preprint arXiv:2212.02882.
[45]
Andrea Abrardo, Alberto Toccafondi, Marco Di Renzo, Design of reconfigurable intelligent surfaces by using S-parameter multiport network theory – Optimization and full-wave validation, 2023.
[46]
Matteo Nerini, Shanpu Shen, Hongyu Li, Marco Di Renzo, Bruno Clerckx, A universal framework for multiport network analysis of reconfigurable intelligent surfaces, 2023, arXiv preprint arXiv:2311.10561.
[47]
Josef A. Nossek, Dominik Semmler, Michael Joham, Wolfgang Utschick, Physically consistent modelling of wireless links with reconfigurable intelligent surfaces using multiport network analysis, 2023, arXiv preprint arXiv:2308.12223.
[48]
Gabriele Gradoni, Marco Di Renzo, End-to-end mutual coupling aware communication model for reconfigurable intelligent surfaces: An electromagnetic-compliant approach based on mutual impedances, IEEE Wirel. Commun. Lett. 10 (5) (2021) 938–942,.
[49]
D.M. Pozar, Microwave Engineering, John Wiley & Sons, 2011.
[50]
Andrea Abrardo, Alberto Toccafondi, Marco Di Renzo, Design of reconfigurable intelligent surfaces by using s-parameter multiport network theory–optimization and full-wave validation, IEEE Trans. Wireless Commun. (2024).
[51]
Philipp Del Hougne, Load impedances vs polarizabilities: On the compactness of physics-compliant models of RIS-parametrized wireless channels, in: 2024 18th European Conference on Antennas and Propagation, EuCAP, IEEE, 2024, pp. 1–4.
[52]
Rashid Faqiri, Chloe Saigre-Tardif, George C. Alexandropoulos, Nir Shlezinger, Mohammadreza F. Imani, Philipp del Hougne, PhysFad: Physics-based end-to-end channel modeling of RIS-parametrized environments with adjustable fading, IEEE Trans. Wirel. Commun. 22 (1) (2023) 580–595,.
[53]
Chloé Saigre-Tardif, Philipp del Hougne, Self-adaptive RISs beyond free space: Convergence of localization, sensing, and communication under rich-scattering conditions, IEEE Wirel. Commun. (ISSN ) 30 (1) (2023) 24–30,.
[54]
Philipp del Hougne, Physics-compliant diagonal representation of beyond-diagonal RIS, 2024, arXiv preprint arXiv:2403.17222.
[55]
Philipp del Hougne, RIS-parametrized rich-scattering environments: Physics-compliant models, channel estimation, and optimization, 2023, URL https://arxiv.org/abs/2311.11651.
[56]
Jérôme Sol, Hugo Prod’homme, Luc Le Magoarou, Philipp Del Hougne, Experimentally realized physical-model-based frugal wave control in metasurface-programmable complex media, Nature Commun. 15 (1) (2024) 2841.
[57]
Hongyu Li, Shanpu Shen, Matteo Nerini, Bruno Clerckx, Reconfigurable intelligent surfaces 2.0: Beyond diagonal phase shift matrices, 2023.
[58]
Matteo Nerini, Shanpu Shen, Bruno Clerckx, Discrete-value group and fully connected architectures for beyond diagonal reconfigurable intelligent surfaces, IEEE Trans. Veh. Technol. 72 (12) (2023) 16354–16368,.
[59]
Hongyu Li, Shanpu Shen, Bruno Clerckx, Beyond diagonal reconfigurable intelligent surfaces: From transmitting and reflecting modes to single-, group-, and fully-connected architectures, IEEE Trans. Wireless Commun. 22 (4) (2023) 2311–2324,.
[60]
Ertugrul Basar, Marco Di Renzo, Julien De Rosny, Merouane Debbah, Mohamed-Slim Alouini, Rui Zhang, Wireless communications through reconfigurable intelligent surfaces, IEEE Access 7 (2019) 116753–116773,.
[61]
Qingqing Wu, Rui Zhang, Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network, IEEE Commun. Mag. 58 (1) (2020) 106–112,.
[62]
Shanpu Shen, Bruno Clerckx, Ross Murch, Modeling and architecture design of reconfigurable intelligent surfaces using scattering parameter network analysis, IEEE Trans. Wireless Commun. 21 (2) (2022) 1229–1243,.
[63]
Hongyu Li, Shanpu Shen, Bruno Clerckx, A dynamic grouping strategy for beyond diagonal reconfigurable intelligent surfaces with hybrid transmitting and reflecting mode, IEEE Trans. Veh. Technol. 72 (12) (2023) 16748–16753,.
[64]
Qingchao Li, Mohammed El-Hajjar, Ibrahim Hemadeh, Arman Shojaeifard, Alain A.M. Mourad, Bruno Clerckx, Lajos Hanzo, Reconfigurable intelligent surfaces relying on non-diagonal phase shift matrices, IEEE Trans. Veh. Technol. 71 (6) (2022) 6367–6383,.
[65]
Shuhang Zhang, Hongliang Zhang, Boya Di, Yunhua Tan, Zhu Han, Lingyang Song, Beyond intelligent reflecting surfaces: Reflective-transmissive metasurface aided communications for full-dimensional coverage extension, IEEE Trans. Veh. Technol. 69 (11) (2020) 13905–13909,.
[66]
Hongliang Zhang, Boya Di, Intelligent omni-surfaces: Simultaneous refraction and reflection for full-dimensional wireless communications, IEEE Commun. Surv. Tutor. 24 (4) (2022) 1997–2028,.
[67]
Jiaqi Xu, Yuanwei Liu, Xidong Mu, Joey Tianyi Zhou, Lingyang Song, H. Vincent Poor, Lajos Hanzo, Simultaneously transmitting and reflecting intelligent omni-surfaces: Modeling and implementation, IEEE Veh. Technol. Mag. 17 (2) (2022) 46–54,.
[68]
Hongliang Zhang, Shuhao Zeng, Boya Di, Yunhua Tan, Marco Di Renzo, Mérouane Debbah, Zhu Han, H. Vincent Poor, Lingyang Song, Intelligent omni-surfaces for full-dimensional wireless communications: Principles, technology, and implementation, IEEE Commun. Mag. 60 (2) (2022) 39–45,.
[69]
Jiaqi Xu, Yuanwei Liu, Xidong Mu, Octavia A. Dobre, STAR-RISs: Simultaneous transmitting and reflecting reconfigurable intelligent surfaces, IEEE Commun. Lett. 25 (9) (2021) 3134–3138,.
[70]
Hongyu Li, Shanpu Shen, Bruno Clerckx, Beyond diagonal reconfigurable intelligent surfaces: A multi-sector mode enabling highly directional full-space wireless coverage, IEEE J. Sel. Areas Commun. 41 (8) (2023) 2446–2460,.
[71]
Pinjun Zheng, Ruiqi Wang, Atif Shamim, Tareq Y. Al-Naffouri, Mutual coupling in RIS-aided communication: Model training and experimental validation, 2024.
[72]
Hongyu Li, Shanpu Shen, Matteo Nerini, Marco Di Renzo, Bruno Clerckx, Beyond diagonal reconfigurable intelligent surfaces with mutual coupling: Modeling and optimization, IEEE Commun. Lett. 28 (4) (2024) 937–941,.
[73]
Ruoyan Ma, Jie Tang, Xiu Yin Zhang, Kai-Kit Wong, Jonathon A. Chambers, RIS-assisted SWIPT network for internet of everything under the electromagnetics-based communication model, IEEE Internet Things J. 11 (9) (2024) 15402–15415,.
[74]
Özlem Tuğfe Demir, Emil Björnson, Wideband channel capacity maximization with beyond diagonal RIS reflection matrices, 2024.
[75]
Hongyu Li, Matteo Nerini, Shanpu Shen, Bruno Clerckx, Wideband modeling and beamforming for beyond diagonal reconfigurable intelligent surfaces, 2024.
[76]
Xin Cheng, Yan Lin, Weiping Shi, Jiayu Li, Cunhua Pan, Feng Shu, Yongpeng Wu, Jiangzhou Wang, Joint optimization for RIS-assisted wireless communications: From physical and electromagnetic perspectives, IEEE Trans. Commun. 70 (1) (2022) 606–620,.
[77]
Yuyan Zhou, Yang Liu, Hongyu Li, Qingqing Wu, Shanpu Shen, Bruno Clerckx, Optimizing power consumption, energy efficiency and sum-rate using beyond diagonal RIS — A unified approach, IEEE Trans. Wireless Commun. (2023) 1,.
[78]
Qingchao Li, Mohammed El-Hajjar, Ibrahim Hemadeh, Arman Shojaeifard, Lajos Hanzo, Coordinated reconfigurable intelligent surfaces: Non-diagonal group-connected design, IEEE Trans. Veh. Technol. (2024) 1–6,.
[79]
Matteo Nerini, Shanpu Shen, Hongyu Li, Bruno Clerckx, Beyond diagonal reconfigurable intelligent surfaces utilizing graph theory: Modeling, architecture design, and optimization, 2024.
[80]
Arthur S. de Sena, Mehdi Rasti, Nurul H. Mahmood, Matti Latva-aho, Beyond diagonal RIS for multi-band multi-cell MIMO networks: A practical frequency-dependent model and performance analysis, 2024, arXiv preprint arXiv:2401.06475.
[81]
Matteo Nerini, Shanpu Shen, Bruno Clerckx, Closed-form global optimization of beyond diagonal reconfigurable intelligent surfaces, IEEE Trans. Wireless Commun. 23 (2) (2024) 1037–1051,.
[82]
Zhuang Mao, Wei Wang, Qian Xia, Caijun Zhong, Xinhua Pan, Zhizhen Ye, Element-grouping intelligent reflecting surface: Electromagnetic-compliant model and geometry-based optimization, IEEE Trans. Wireless Commun. 21 (7) (2022) 5362–5376,.
[83]
Nemanja Stefan Perović, Le-Nam Tran, Marco Di Renzo, Mark F. Flanagan, Optimization of RIS-aided SISO systems based on a mutually coupled loaded wire dipole model, 2023.
[84]
Jian Sang, Jifeng Lan, Mingyong Zhou, Boning Gao, Wankai Tang, Xiao Li, Xinping Yi, Shi Jin, Quantized phase alignment by discrete phase shifts for reconfigurable intelligent surface-assisted communication systems, 2023.
[85]
Lin Cao, Haifan Yin, Li Tan, Xilong Pei, RIS with insufficient phase shifting capability: Modeling, beamforming, and experimental validations, 2023.
[86]
Jiaqi Xu, Xidong Mu, Yuanwei Liu, Exploiting STAR-RISs in near-field communications, 2023.
[87]
Ignacio Santamaria, Mohammad Soleymani, Eduard Jorswieck, Jesús Gutiérrez, SNR maximization in beyond diagonal RIS-assisted single and multiple antenna links, IEEE Signal Process. Lett. (2023).
[88]
Xuewen Qian, Marco Di Renzo, Mutual coupling and unit cell aware optimization for reconfigurable intelligent surfaces, IEEE Wirel. Commun. Lett. 10 (6) (2021) 1183–1187.
[89]
Athira Subhash, Abla Kammoun, Ahmed Elzanaty, Sheetal Kalyani, Yazan H. Al-Badarneh, Mohamed-Slim Alouini, Optimal phase shift design for fair allocation in RIS aided uplink network using statistical CSI, 2023.
[90]
Andrea Abrardo, Davide Dardari, Marco Di Renzo, Xuewen Qian, MIMO interference channels assisted by reconfigurable intelligent surfaces: Mutual coupling aware sum-rate optimization based on a mutual impedance channel model, IEEE Wirel. Commun. Lett. 10 (12) (2021) 2624–2628,.
[91]
Matteo Nerini, Shanpu Shen, Bruno Clerckx, Static grouping strategy design for beyond diagonal reconfigurable intelligent surfaces, 2024.
[92]
Hongyu Li, Shanpu Shen, Bruno Clerckx, Synergizing beyond diagonal reconfigurable intelligent surface and rate-splitting multiple access, IEEE Trans. Wireless Commun. (2024) 1,.
[93]
Zengrui Liu, Yang Liu, Shanpu Shen, Qingqing Wu, Qingjiang Shi, Enhancing ISAC network throughput using beyond diagonal RIS, IEEE Wirel. Commun. Lett. (2024) 1,.
[94]
Dawei Ying, David J. Love, Bertrand M. Hochwald, Sum-rate analysis for multi-user MIMO systems with user exposure constraints, IEEE Trans. Wireless Commun. 16 (11) (2017) 7376–7388,.
[95]
Placido Mursia, Sendy Phang, Vincenzo Sciancalepore, Gabriele Gradoni, Marco Di Renzo, SARIS: Scattering aware reconfigurable intelligent surface model and optimization for complex propagation channels, 2023.
[96]
Bile Peng, Karl-Ludwig Besser, Shanpu Shen, Finn Siegismund-Poschmann, Ramprasad Raghunath, Daniel Mittleman, Vahid Jamali, Eduard A. Jorswieck, RISnet: A domain-knowledge driven neural network architecture for RIS optimization with mutual coupling and partial CSI, 2024.
[97]
Bjorn Sihlbom, Marios I. Poulakis, Marco Di Renzo, Reconfigurable intelligent surfaces: Performance assessment through a system-level simulator, IEEE Wirel. Commun. (2022).
[98]
Hanyu Jiang, Li You, Jue Wang, Wenjin Wang, Xiqi Gao, Hybrid RIS and DMA assisted multiuser MIMO uplink transmission with electromagnetic exposure constraints, IEEE J. Sel. Top. Sign. Proces. 16 (5) (2022) 1055–1069,.
[99]
Ruoyan Ma, Jie Tang, Xiuyin Zhang, Kai-Kit Wong, Jonathon A. Chambers, Energy efficiency optimization for mutual-coupling-aware wireless communication system based on RIS-enhanced SWIPT, IEEE Internet Things J. (2023) 1,.
[100]
Alessio Zappone, Marco Di Renzo, Energy efficiency optimization of reconfigurable intelligent surfaces with electromagnetic field exposure constraints, IEEE Signal Process. Lett. 29 (2022) 1447–1451,.
[101]
Yongxu Zhu, Gan Zheng, Kai-Kit Wong, Stochastic geometry analysis of large intelligent surface-assisted millimeter wave networks, IEEE J. Sel. Areas Commun. 38 (8) (2020) 1749–1762,.
[102]
Andrea De Jesus Torres, Luca Sanguinetti, Emil Björnson, Electromagnetic interference in RIS-aided communications, 2021.
[103]
Sawyer D. Campbell, David Sell, Ronald P. Jenkins, Eric B. Whiting, Jonathan A. Fan, Douglas H. Werner, Review of numerical optimization techniques for meta-device design, Opt. Mater. Express 9 (4) (2019) 1842–1863.
[104]
Qian Zhang, Che Liu, Xiang Wan, Lei Zhang, Shuo Liu, Yan Yang, Tie Jun Cui, Machine-learning designs of anisotropic digital coding metasurfaces, Adv. Theory Simul. 2 (2) (2019).
[105]
Zhaoyi Li, Raphaël Pestourie, Zin Lin, Steven G. Johnson, Federico Capasso, Empowering metasurfaces with inverse design: principles and applications, ACS Photonics 9 (7) (2022) 2178–2192.
[106]
Dianjing Liu, Yixuan Tan, Erfan Khoram, Zongfu Yu, Training deep neural networks for the inverse design of nanophotonic structures, Acs Photonics 5 (4) (2018) 1365–1369.
[107]
Sean Molesky, Zin Lin, Alexander Y. Piggott, Weiliang Jin, Jelena Vucković, Alejandro W. Rodriguez, Inverse design in nanophotonics, Nat. Photonics 12 (11) (2018) 659–670.
[108]
Sunae So, Trevon Badloe, Jaebum Noh, Jorge Bravo-Abad, Junsuk Rho, Deep learning enabled inverse design in nanophotonics, Nanophotonics 9 (5) (2020) 1041–1057.
[109]
Peter R. Wiecha, Arnaud Arbouet, Christian Girard, Otto L. Muskens, Deep learning in nano-photonics: inverse design and beyond, Photonics Res. 9 (5) (2021) B182–B200.
[110]
Peter R. Wiecha, Alexander Yu Petrov, Patrice Genevet, Andrey Bogdanov, Inverse design of nanophotonics devices and materials, Photon. Nanostruct.: Fundam. Appl. (2022).
[111]
Yurui Qu, Huanzheng Zhu, Yichen Shen, Jin Zhang, Chenning Tao, Pintu Ghosh, Min Qiu, Inverse design of an integrated-nanophotonics optical neural network, Sci. Bull. 65 (14) (2020) 1177–1183.
[112]
Stefano Maci, Gabriele Minatti, Massimiliano Casaletti, Marko Bosiljevac, Metasurfing: Addressing waves on impenetrable metasurfaces, IEEE Antennas Wirel. Propag. Lett. 10 (2011) 1499–1502.
[113]
Sandeep Inampudi, Hossein Mosallaei, Neural network based design of metagratings, Appl. Phys. Lett. 112 (24) (2018).
[114]
Jiaqi Jiang, David Sell, Stephan Hoyer, Jason Hickey, Jianji Yang, Jonathan A Fan, Data-driven metasurface discovery, 2018, arXiv preprint arXiv:1811.12436.
[115]
John Peurifoy, Yichen Shen, Li Jing, Yi Yang, Fidel Cano-Renteria, Brendan G. DeLacy, John D. Joannopoulos, Max Tegmark, Marin Soljačić, Nanophotonic particle simulation and inverse design using artificial neural networks, Sci. Adv. 4 (6) (2018) eaar4206.
[116]
Tao Shan, Xiaotian Pan, Maokun Li, Shenheng Xu, Fan Yang, Coding programmable metasurfaces based on deep learning techniques, IEEE J. Emerg. Sel. Top. Circuits Syst. 10 (1) (2020) 114–125.
[117]
Zhaocheng Liu, Dayu Zhu, Sean P. Rodrigues, Kyu-Tae Lee, Wenshan Cai, Generative model for the inverse design of metasurfaces, Nano Lett. 18 (10) (2018) 6570–6576.
[118]
John A. Hodge, Kumar Vijay Mishra, Amir I. Zaghloul, RF metasurface array design using deep convolutional generative adversarial networks, in: 2019 IEEE International Symposium on Phased Array System & Technology, PAST, IEEE, 2019, pp. 1–6.
[119]
Wei Ma, Feng Cheng, Yihao Xu, Qinlong Wen, Yongmin Liu, Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy, Adv. Mater. 31 (35) (2019).
[120]
Jiaqi Jiang, Jonathan A. Fan, Global optimization of dielectric metasurfaces using a physics-driven neural network, Nano Lett. 19 (8) (2019) 5366–5372.
[121]
Wenye Ji, Jin Chang, He-Xiu Xu, Jian Rong Gao, Simon Gröblacher, H. Paul Urbach, Aurèle J.L. Adam, Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods, Light: Sci. Appl. 12 (1) (2023) 169.
[122]
Junjie Hou, Jing Jin, Hai Lin, Zixin Liu, Jiaping Fu, Feng Feng, An overview of deep learning techniques for inverse design of metasurface, in: 2023 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, NEMO, IEEE, 2023, pp. 110–113.
[123]
Zicheng Song, Ruicong Zhang, Pingping Min, Tianyu Wang, Wenxin Cao, Yurong He, Lin Wu, Jiaqi Zhu, Cheng-Wei Qiu, Inverse design of diffusion–absorption hybrid metasurfaces, Laser Photonics Rev. (2023).
[124]
Weijian Zhou, Shuoyuan Wang, Qian Wu, Xianchen Xu, Xinjing Huang, Guoliang Huang, Yang Liu, Zheng Fan, An inverse design paradigm of multi-functional elastic metasurface via data-driven machine learning, Mater. Des. 226 (2023).
[125]
Kumar Vijay Mishra, Ahmet M. Elbir, Amir I. Zaghloul, Machine learning for metasurfaces design and their applications, 2022.
[126]
John A. Hodge, Kumar Vijay Mishra, Amir I. Zaghloul, Deep inverse design of reconfigurable metasurfaces for future communications, 2021, arXiv preprint arXiv:2101.09131.
[127]
John Adams Hodge II, Reconfigurable Intelligent Metasurfaces for Wireless Communication and Sensing Applications, (Ph.D. thesis) Virginia Tech, 2022.
[128]
Xin Shi, Tianshuo Qiu, Jiafu Wang, Xueqing Zhao, Shaobo Qu, Metasurface inverse design using machine learning approaches, J. Phys. D: Appl. Phys. 53 (27) (2020).
[129]
Ruichao Zhu, Tianshuo Qiu, Jiafu Wang, Sai Sui, Chenglong Hao, Tonghao Liu, Yongfeng Li, Mingde Feng, Anxue Zhang, Cheng-Wei Qiu, et al., Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning, Nature Commun. 12 (1) (2021) 2974.
[130]
Peng Xu, Jun Lou, Chenxia Li, Xufeng Jing, Inverse design of a metasurface based on a deep tandem neural network, J. Opt. Soc. Am. B 41 (2) (2024) A1–A5.
[131]
Fardin Ghorbani, Javad Shabanpour, Sina Beyraghi, Hossein Soleimani, Homayoon Oraizi, Mohammad Soleimani, A deep learning approach for inverse design of the metasurface for dual-polarized waves, Appl. Phys. A 127 (11) (2021),.
[132]
Wei Peng, Jun Zhang, Weien Zhou, Xiaoyu Zhao, Wen Yao, Xiaoqian Chen, IDRLnet: A physics-informed neural network library, 2021.
[133]
Prajith Pillai, Anirban Chaudhari, Parama Pal, Beena Rai, Physics-informed neural network for inversely predicting effective electric permittivities of metamaterials, in: Proceedings of the 35th Neural Information Processing Systems (NeurIPS) Machine Learning and the Physical Sciences Workshop, 2021.
[134]
Tamara G. Grossmann, Urszula Julia Komorowska, Jonas Latz, Carola-Bibiane Schönlieb, Can physics-informed neural networks beat the finite element method?, 2023, arXiv preprint arXiv:2302.04107.
[135]
George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, Liu Yang, Physics-informed machine learning, Nat. Rev. Phys. 3 (6) (2021) 422–440.
[136]
Chuizheng Meng, Sungyong Seo, Defu Cao, Sam Griesemer, Yan Liu, When physics meets machine learning: A survey of physics-informed machine learning, 2022, arXiv preprint arXiv:2203.16797.
[137]
Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, Francesco Piccialli, Scientific machine learning through physics–informed neural networks: Where we are and what’s next, J. Sci. Comput. 92 (3) (2022) 88.
[138]
Steffen Limmer, Alberto Martinez Alba, Nicola Michailow, Physics-informed neural networks for pathloss prediction, 2022.
[139]
Sulagna Sarkar, Anqi Ji, Zachary Jermain, Robert Lipton, Mark Brongersma, Kaushik Dayal, Hae Young Noh, Physics Guided Machine Learning for Inverse Design of Metamaterials, Department of Civil and Environmental Engineering, Carnegie Mellon University, 2022.
[140]
Cheng-Xiang Wang, Yue Yang, Jie Huang, Xiqi Gao, Tie Jun Cui, Lajos Hanzo, Electromagnetic information theory: Fundamentals and applications for 6G wireless communication systems, 2024.
[141]
Jun Yan Dai, Wankai Tang, Ming Zheng Chen, Chi Hou Chan, Qiang Cheng, Shi Jin, Tie Jun Cui, Wireless communication based on information metasurfaces, IEEE Trans. Microw. Theory Tech. 69 (3) (2021) 1493–1510.
[142]
Zhongzhichao Wan, Jieao Zhu, Zijian Zhang, Linglong Dai, Chan-Byoung Chae, Mutual information for electromagnetic information theory based on random fields, IEEE Trans. Commun. 71 (4) (2023) 1982–1996.
[143]
Runyu Lyu, Wenchi Cheng, Joint reflection and power splitting optimization for RIS-assisted OAM-SWIPT, in: GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 2022, pp. 1073–1078,.
[144]
Decai Shen, Zijian Zhang, Linglong Dai, Joint beamforming design for RIS-assisted cell-free network with multi-hop transmissions, Tsinghua Sci. Technol. 28 (6) (2023) 1115–1127.
[145]
Zhaohui Yang, Ye Hu, Zhaoyang Zhang, Wei Xu, Caijun Zhong, Kai-Kit Wong, Reconfigurable intelligent surface based orbital angular momentum: Architecture, opportunities, and challenges, IEEE Wirel. Commun. 28 (6) (2021) 132–137.
[146]
Omar Maraqa, Sylvester Aboagye, Telex M.N. Ngatched, Optical STAR-RIS-aided VLC systems: RSMA versus NOMA, IEEE Open J. Commun. Soc. 5 (2024) 430–441,.
[147]
Sylvester Aboagye, Alain R. Ndjiongue, Telex M.N. Ngatched, Octavia A. Dobre, H. Vincent Poor, RIS-assisted visible light communication systems: A tutorial, IEEE Commun. Surv. Tutor. 25 (1) (2023) 251–288,.
[148]
Jianwei You, Qian Ma, Lei Zhang, Che Liu, Jianan Zhang, Shuo Liu, Tiejun Cui, Electromagnetic metamaterials: From classical to quantum, Electromagn. Sci. 1 (1) (2023) 1–33.
[149]
Qi Jian Lim, Charles Ross, Amitava Ghosh, Frederick Vook, Gabriele Gradoni, Zhen Peng, Quantum-assisted combinatorial optimization for reconfigurable intelligent surfaces in smart electromagnetic environments, IEEE Trans. Antennas and Propagation (2023).
[150]
Takahiro Ohyama, Yuichi Kawamoto, Nei Kato, Resource allocation optimization by quantum computing for shared use of standalone IRS, IEEE Trans. Emerg. Top. Comput. (2023).
[151]
Charles Ross, Gabriele Gradoni, Qi Jian Lim, Zhen Peng, Engineering reflective metasurfaces with ising Hamiltonian and quantum annealing, IEEE Trans. Antennas and Propagation 70 (4) (2021) 2841–2854.
[152]
Charles Ross, Gabriele Gradoni, Zhen Peng, A hybrid classical-quantum computing framework for RIS-assisted wireless network, in: 2023 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, NEMO, 2023, pp. 99–102,.
[153]
Jiajia Shi, Tse-Tin Chan, Haoyuan Pan, Tat-Ming Lok, Reconfigurable intelligent surface assisted semantic communication systems, 2023, arXiv preprint arXiv:2306.09650.
[154]
Peiwen Jiang, Chao-Kai Wen, Shi Jin, Geoffrey Ye Li, RIS-enhanced semantic communications adaptive to user requirements, 2023, arXiv preprint arXiv:2307.16100.
[155]
Yiru Wang, Wanting Yang, Pengxin Guan, Yuping Zhao, Zehui Xiong, STAR-RIS-assisted privacy protection in semantic communication system, 2023, arXiv preprint arXiv:2306.12675.
[156]
Hongyang Du, Jiacheng Wang, Dusit Niyato, Jiawen Kang, Zehui Xiong, Junshan Zhang, Xuemin Shen, Semantic communications for wireless sensing: RIS-aided encoding and self-supervised decoding, IEEE J. Sel. Areas Commun. 41 (8) (2023) 2547–2562,.
[157]
Mengke Li, Bai Yan, Jin Zhang, Evolutionary multi-objective optimization for RIS-aided MU-MISO communication systems, Soft Comput. 27 (12) (2023) 8091–8106.
[158]
Arman Azizi, Arman Farhang, RIS meets aerodynamic HAPS: A multi-objective optimization approach, 2023, arXiv preprint arXiv:2301.10682.
[159]
Abdelhamed Mohamed, A. Zappone, Marco Di Renzo, Bi-objective optimization of information rate and harvested power in RIS-aided SWIPT systems, IEEE Wirel. Commun. Lett. 11 (10) (2022) 2195–2199,.
[160]
Kefeng Guo, Min Wu, Xingwang Li, Houbing Song, Neeraj Kumar, Deep reinforcement learning and NOMA-based multi-objective RIS-assisted IS-UAV-TNs: Trajectory optimization and beamforming design, IEEE Trans. Intell. Transp. Syst. 24 (9) (2023) 10197–10210,.
[161]
Jian Chen, Sujie Wang, Jie Jia, Qinghu Wang, Leyou Yang, Xingwei Wang, Multi-objective oriented resource allocation in reconfigurable intelligent surface assisted HCNs, Ad Hoc Netw. 140 (2023).
[162]
Junwei Chai, Yunhui Yi, Xiandeng He, Zicheng Xing, Yuanxinyu Luo, Xingcai Zhang, Rate Optimization and Interference Suppression in RIS-assisted MIMO Systems, in: Proceedings of the 2023 10th International Conference on Wireless Communication and Sensor Networks, 2023, pp. 103–109.
[163]
Rang Liu, Ming Li, Qian Liu, A. Lee Swindlehurst, Joint waveform and filter designs for STAP-SLP-based MIMO-DFRC systems, IEEE J. Sel. Areas Commun. 40 (6) (2022) 1918–1931.
[164]
Matteo Nerini, Bruno Clerckx, Physically consistent modeling of stacked intelligent metasurfaces implemented with beyond diagonal RIS, IEEE Commun. Lett. (2024).
[165]
Jiancheng An, Marco Di Renzo, Mérouane Debbah, Chau Yuen, Stacked intelligent metasurfaces for multiuser beamforming in the wave domain, in: ICC 2023-IEEE International Conference on Communications, IEEE, 2023, pp. 2834–2839.
[166]
Jiancheng An, Chau Yuen, Chao Xu, Hongbin Li, Derrick Wing Kwan Ng, Marco Di Renzo, Mérouane Debbah, Lajos Hanzo, Stacked intelligent metasurface-aided MIMO transceiver design, IEEE Wirel. Commun. (2024).
[167]
Hao Liu, Jiancheng An, Xing Jia, Shining Lin, Xianghao Yao, Lu Gan, Bruno Clerckx, Chau Yuen, Mehdi Bennis, Mérouane Debbah, Stacked intelligent metasurfaces for wireless sensing and communication: Applications and challenges, 2024, arXiv preprint arXiv:2407.03566.
[168]
Guojun Huang, Jiancheng An, Zhaohui Yang, Lu Gan, Mehdi Bennis, Mérouane Debbah, Stacked intelligent metasurfaces for task-oriented semantic communications, 2024, arXiv preprint arXiv:2407.15053.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computer Networks: The International Journal of Computer and Telecommunications Networking
Computer Networks: The International Journal of Computer and Telecommunications Networking  Volume 257, Issue C
Feb 2025
1062 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 20 February 2025

Author Tags

  1. Wireless communication
  2. Reconfigurable intelligent surfaces
  3. Electromagnetic models
  4. Optimization techniques
  5. Machine learning

Qualifiers

  • Short-survey

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media