Nothing Special   »   [go: up one dir, main page]

skip to main content
short-survey

Latency optimized C-RAN in optical backhaul and RF fronthaul architecture for beyond 5G network: : A comprehensive survey

Published: 18 July 2024 Publication History

Abstract

The need for high-speed data connection has significantly strained Mobile Network Operators (MNOs) due to an exponential increase in traffic. Numerous innovative technologies have been used to fulfill consumer service needs in capacity, high-speed data, network coverage, and Quality of Service (QoS), but they still require more thought. Because of several advantageous features in terms of resource utilization, service deployment, Capital Expenditure (CAPEX), Operating Expense (OPEX), and network management, the Cloud-based Radio Access Network (C-RAN) has played a significant role in mitigating the issues faced by mobile network operators. However, the C-RAN technology places high demands on the mobile fronthaul network due to the risk of connection interruptions. This article thoroughly analyzes the essential technologies, problems, design, needs, and solutions for effective fronthaul and backhaul communication a fifth-generation (5G) and beyond systems. There have been reviews of optical-based fronthaul and backhaul technologies. This article makes suggestions for ways to make fronthaul and backhaul communication systems more effective by lowering the costs, bandwidth, latency, and power requirements.

References

[1]
Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, R. Freund, Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges, IEEE Commun. Mag. 54 (2) (2016) 64–71.
[2]
J. Wu, Z. Zhang, Y. Hong, Y. Wen, Cloud radio access network (C-RAN): a primer, IEEE Netw. 29 (1) (2015) 35–41.
[3]
C. Liu, J. Wang, L. Cheng, M. Zhu, G.K. Chang, Key microwave-photonics technologies for next-generation cloud-based radio access networks, J. Lightwave Technol. 32 (20) (2014) 3452–3460.
[4]
M. Nahas, A. Saadani, J.P. Charles, Z. El-Bazzal, Base stations evolution: Toward 4G technology, in: Telecommunications (ICT), 2012 19th International Conference on, 2012, pp. 1–6.
[5]
A. Checko, H.L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M.S. Berger, L. Dittmann, Cloud RAN for mobile networks - a technology overview, IEEE Commun. Surv. Tutor. 17 (1) (2015) 405–426. Firstquarter.
[6]
H. Dahrouj, A. Douik, O. Dhifallah, T.Y. Al-Naffouri, M.S. Alouini, Resource allocation in heterogeneous cloud radio access networks: advances and challenges, IEEe Wirel. Commun. 22 (3) (2015) 66–73.
[7]
U. Siddique, H. Tabassum, E. Hossain, D.I. Kim, Wireless backhauling of 5G small cells: challenges and solution approaches, IEEe Wirel. Commun. 22 (5) (2015) 22–31.
[8]
C.W. Tsai, H.H. Cho, T.K. Shih, J.S. Pan, J.J.P.C. Rodrigues, Metaheuristics for the deployment of 5G, IEEe Wirel. Commun. 22 (6) (2015) 40–46.
[9]
N. Wang, E. Hossain, V.K. Bhargava, Backhauling 5G small cells: a radio resource management perspective, IEEe Wirel. Commun. 22 (5) (2015) 41–49.
[10]
B. Haberland, F. Derakhshan, H. Grob-Lipski, R. Klotsche, W. Rehm, P. Schefczik, M. Soellner, Radio base stations in the cloud, Bell. Labs. Tech. J. 18 (1) (2013) 129–152.
[11]
M.C.R. Medeiros, R. Costa, H.A. Silva, P. Laurˆencio, P.P. Monteiro, Cost effective hybrid dynamic radio access supported by radio over fiber, in: 2015 17th International Conference on Transparent Optical Networks (ICTON), July 2015, pp. 1–4.
[12]
P.P. Monteiro, A. Gameiro, Convergence of optical and wireless technologies for 5G, in: F. Hu (Ed.), Opportunities in 5G Networks: A Research and Development Perspective, CRC Press: CRC Press, 2016, pp. 179–215. ch. 9.
[13]
P.T. Dat, A. Kanno, T. Kawanishi, Radio-on-radio-over-fiber: efficient fronthauling for small cells and moving cells, IEEe Wirel. Commun. 22 (5) (2015) 67–75.
[14]
M. Peng, Y. Li, Z. Zhao, C. Wang, System architecture and key technologies for 5G heterogeneous cloud radio access networks, IEEE Netw. 29 (2) (2015) 6–14.
[15]
K.N.R.S.V. Prasad, E. Hossain, V.K. Bhargava, Energy efficiency in massive MIMO-based 5G networks: opportunities and challenges, IEEe Wirel. Commun. PP (99) (2017) 2–10.
[16]
I.A. Alimi, J.J. Popoola, K.F. Akingbade, M.O. Kolawole, Interference management in MIMO-OFDM-based emerging wireless systems, Am. J. Inf. Sci. Comput. Eng. 1 (1) (2015) 1–9.
[17]
I.A. Alimi, K.F. Akingbade, J.J. Popoola, M.O. Kolawole, MIMO channel correlation and system capacity analysis, Am. J. Circ., Syst. Signal Process. 1 (2) (2015) 20–27.
[18]
I.A. Alimi, K.F. Akingbade, J.J. Popoola, M.O. Kolawole, A hybrid coding technique for efficient bandwidth usage in conformity with IEEE 802.11 WLAN Standard, Int. J. Electr. Comput. Eng. (IJECE) 3 (5) (2013) 593–602.
[19]
I.A. Alimi, J.J. Popoola, K.F. Akingbade, M.O. Kolawole, Performance analysis of bit-error-rate and channel capacity of MIMO communication systems over multipath fading channels, Int. J. Inf. Commun. Technol. (IJ-ICT) 2 (2) (2013) 57–63.
[20]
Z. Gao, L. Dai, D. Mi, Z. Wang, M.A. Imran, M.Z. Shakir, MmWave massive-MIMO-based wireless backhaul for the 5G ultradense network, IEEe Wirel. Commun. 22 (5) (2015) 13–21.
[21]
X. Ge, S. Tu, G. Mao, C.X. Wang, T. Han, 5G ultra-dense cellular networks, IEEe Wirel. Commun. 23 (1) (2016) 72–79.
[22]
L. Chiaraviglio, F. Cuomo, M. Maisto, A. Gigli, J. Lorincz, Y. Zhou, Z. Zhao, C. Qi, H. Zhang, What is the best spatial distribution to model base station density? A deep dive into two European mobile networks, IEEe Access. 4 (2016) 1434–1443.
[23]
S. Park, C.B. Chae, S. Bahk, Large-scale antenna operation in heterogeneous cloud radio access networks: a partial centralization approach, IEEe Wirel. Commun. 22 (3) (2015) 32–40.
[24]
G.-K. Chang, C. Liu, L. Zhang, Architecture and applications of a versatile small-cell, multi-service cloud radio access network using radio-over-fiber technologies, in: 2013 IEEE International Conference on Communications Workshops (ICC), 2013, pp. 879–883.
[25]
A. de la Oliva, J.A. Hernandez, D. Larrabeiti, A. Azcorra, An overview of the CPRI specification and its application to C-RAN-based LTE scenarios, IEEE Commun. Mag. 54 (2) (2016) 152–159.
[26]
A blueprint of technology, applications and market drivers towards the year 2030 and beyond, document ITU-T FG-NET-2030, ITU, Geneva, Switzerland, 2019.
[27]
H. Touati, H. Castel-Taleb, B. Jouaber, S. Akbarzadeh, Split analysis and fronthaul dimensioning in 5G C-RAN to guarantee ultra-low latency, in: 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), 2020, pp. 1–4,.
[28]
J. Kant Chaudhary, J. Francis, A. Noll Barreto, G. Fettweis, Latency in the Uplink of massive MIMO CRAN with Packetized Fronthaul: modeling and analysis, in: 2019 IEEE Wireless Communications and Networking Conference (WCNC), 2019, pp. 1–7,.
[29]
S. Zhou, X. Liu, F. Effenberger, J. Chao, Low-latency high-efficiency mobile fronthaul with TDM-PON (mobile-PON), IEEE/OSA J. Opt. Commun. Netw. 10 (1) (2018) A20–A26,.
[30]
G.O. Pérez, J.A. Hernández, D. Larrabeiti, Fronthaul network modeling and dimensioning meeting ultra-low latency requirements for 5G, IEEE/OSA J. Opt. Commun. Netw. 10 (6) (2018) 573–581,.
[31]
Future technology trends for the evolution of IMT towards 2030 and beyond, in: Liaison Statement, ITU-R Working Party 5D, ITU, Geneva, Switzerland, 2020.
[32]
Key drivers and research challenges for 6G ubiquitous wireless intelligence, 6G Flagship and Univ. Oulu, Oulu, Finland, White Paper (2019).
[33]
K. David, H. Berndt, 6G vision and requirements: is there any need for beyond 5G?, IEEE Veh. Technol. Mag. 13 (3) (2018) 72–80.
[34]
I.A. Alimi, A.L. Teixeira, P.P. Monteiro, Toward an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies, requirements, challenges, and solutions, IEEE Commun. Surv. Tutor. 20 (1) (2018) 708–769,. Firstquarter.
[35]
C. Lim, Y. Tian, C. Ranaweera, T.A. Nirmalathas, E. Wong and K.-L. Lee, "Evolution of radio-over-fiber technology," in Journal of Lightwave Technology, vol. 37, no. 6, pp. 1647-1656, 15 March15, 2019, doi: 10.1109/JLT.2018.2876722.
[36]
M.J. Shehab, I. Kassem, A.A. Kutty, M. Kucukvar, N. Onat, T. Khattab, 5G networks towards smart and sustainable cities: a review of recent developments, applications and future perspectives, IEEe Access. 10 (2022) 2987–3006,.
[37]
W. Jiang, B. Han, M.A. Habibi, H.D. Schotten, The road towards 6G: a comprehensive survey, in: IEEE Open Journal of the Communications Society, 2, 2021, pp. 334–366,.
[38]
D.C. Nguyen, et al., 6G internet of things: a comprehensive survey, in: IEEE Internet of Things Journal, 9, 2022, pp. 359–383,. 1 Jan.1.
[39]
M. Alsabah, et al., 6G wireless communications networks: a comprehensive survey, in: IEEE Access, 9, 2021, pp. 148191–148243,.
[40]
Y. Lu, X. Zheng, 6G: A survey on technologies, scenarios, challenges, and the related issues, J. Ind. Inf. Integr. Volume19 (2020),. ISSN 2452 414X.
[41]
E.-K. Hong, et al., 6G R&D vision: requirements and candidate technologies, in: Journal of Communications and Networks, 24, April 2022, pp. 232–245,.
[42]
S.J. Nawaz, S.K. Sharma, S. Wyne, M.N. Patwary, M. Asaduzzaman, Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future, IEEe Access. 7 (2019) 46317–46350.
[43]
A. Gupta, R.K. Jha, A survey of 5G network: architecture and emerging technologies, IEEe Access. 3 (2015) 1206–1232.
[44]
P. Chanclou, L.A. Neto, K. Grzybowski, Z. Tayq, F. Saliou, N. Genay, Mobile fronthaul architecture and technologies: A RAN equipment assessment [invited], in: Journal of Optical Communications and Networking, 10, 2018, pp. A1–A7,.
[45]
J. Zou, S. Adrian Sasu, M. Lawin, A. Dochhan, J.-P. Elbers, M. Eiselt, Advanced optical access technologies for next-generation (5G) mobile networks [Invited], in: Journal of Optical Communications and Networking, 12, 2020, pp. D86–D98,.
[46]
T.S. Rappaport, et al., Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond, IEEe Access. 7 (2019) 78729–78757.
[47]
P. Yang, Y. Xiao, M. Xiao, S. Li, 6G wireless communications: vision and potential techniques, IEEE Netw. 33 (4) (2019) 70–75.
[48]
K.B. Letaief, W. Chen, Y. Shi, J. Zhang, Y.-J.A. Zhang, The roadmap to 6G: AI empowered wireless networks, IEEE Commun. Mag. 57 (8) (2019) 84–90.
[49]
B. Zong, C. Fan, X. Wang, X. Duan, B. Wang, J. Wang, 6G technologies: key drivers, core requirements, system architectures, and enabling technologies, IEEE Veh. Technol. Mag. 14 (3) (2019) 18–27.
[50]
Z. Zhang, et al., 6G wireless networks: vision, requirements, architecture, and key technologies, IEEE Veh. Technol. Mag. 14 (3) (2019) 28–41.
[51]
E.C. Strinati, et al., 6G: The next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication, IEEE Veh. Technol. Mag. 14 (3) (2019) 42–50.
[52]
G. Fettweis, et al., The tactile Internet,” ITU-T, Geneva, Switzerland, Technol. Watch Rep. (2014).
[53]
K.S. Kim, D.K. Kim, C.-B. Chae, S. Choi, Y.-C. Ko, J. Kim, Y.-G. Lim, M. Yang, S. Kim, B. Lim, Ultrareliable and low-latency communication techniques for tactile Internet services, Proc. IEEE 107 (2) (2019) 376–393.
[54]
Microsoft HoloLens. Accessed: 2021. [Online]. Available: https://www.microsoft.com/en-us/hololens/.
[55]
T. Huang, W. Yang, J. Wu, A survey on green 6G network: architecture and technologies, IEEe Access. 7 (2019) 175758–175768.
[56]
W. Saad, M. Bennis, M. Chen, A vision of 6G wireless systems: applications, trends, technologies, and open research problems, IEEE Netw. 34 (3) (2020) 134–142.
[57]
M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi, Toward 6G networks: use cases and technologies, IEEE Commun. Mag. 58 (3) (2020) 55–61.
[58]
S. Elmeadawy, R.M. Shubair, 6G wireless communications: future technologies and research challenges, in: Proc. Int. Conf. Electr, Comput. Technol. Appl. (ICECTA), 2019, pp. 1–5.
[59]
E.C. Strinati, S. Barbarossa, J.L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, C. Dehos, 6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication, IEEE Veh. Technol. Mag. 14 (3) (2019) 42–50.
[60]
I.F. Akyildiz, M. Pierobon, S. Balasubramaniam, Y. Koucheryavy, The internet of bio-nano things, IEEE Commun. Mag. 53 (3) (2015) 32–40.
[61]
D.E. Kouicem, A. Bouabdallah, H. Lakhlef, Internet of Things security: a top-down survey, Comput. Netw. 141 (2018) 199–221.
[62]
H. Yang, K. Zheng, K. Zhang, J. Mei, Y. Qian, Ultra-reliable and low-latency communications for connected vehicles: challenges and solutions, IEEE Netw. 34 (3) (2020) 92–100.
[63]
D.P. Isravel, S. Silas, E.B. Rajsingh, SDN-based traffic management for personalized ambient assisted living healthcare system, Intelligence in Big Data Technologies—Beyond the Hype, Springer, Singapore, 2020, pp. 379–388.
[64]
S. Movassaghi, M. Abolhasan, J. Lipman, D. Smith, A. Jamalipour, Wireless body area networks: a survey, IEEE Commun. Surv. Tuts. 16 (3) (2014) 1658–1686. 3rd Quart.
[65]
I.F. Akyildiz, A. Kak, S. Nie, 6G and beyond: the future of wireless communications systems, IEEe Access. 8 (2020) 133995–134030.
[66]
J. Wang, M. Peng, Y. Liu, X. Liu, M. Daneshmand, Performance analysis of signal detection for amplify-and-forward relay in diffusion-based molecular communication systems, IEEe Internet. Things. J. 7 (2) (2020) 1401–1412.
[67]
C. Atwell, Yes Industry 5.0 is already on the horizon, Retrieved from https://www.machinedesign.com/automation-iiot/article/21835933/yes-industry-50-is-already-on-the-horizon, Accessed on 2021.
[68]
K.A. Demir and H. Cicibas¸, The next industrial revolution: industry 5.0 and discussions on industry 4.0.‘‘ industry 4.0 from the management information systems perspectives. Peter Lang Publishing House, (2018).
[69]
Java point, Retrieved from what is quantum computing— Javatpoint, https://www.javatpoint.com/what-is-quantumcomputing, Accessed on 2021.
[70]
A.S. Duggal, P.K. Malik, A. Gehlot, R. Singh, G.S. Gaba, M. Masud, J.F. Al-Amri, A sequential roadmap to industry 6.0: exploring future manufacturing, Commun 16 (2022) 521–531,.
[71]
Z. Na, Y. Liu, J. Shi, C. Liu, Z. Gao, UAV-supported clustered NOMA for 6G-enabled Internet of Things: trajectory planning and resource allocation, IEEe Internet. Things. J. (2020),. early access.
[72]
E. Markoval, D. Moltchanov, R. Pirmagomedov, D. Ivanova, Y. Koucheryavy, K. Samouylov, Priority-based coexistence of eMBB and URLLC traffic in industrial 5G NR deployments, in: Proc. IEEE 12th Int. Congr. Ultra Mod. Telecommun. Control Syst. Workshops (ICUMT), 2020, pp. 1–6.
[73]
H.E. Melcherts, The Internet of Everything and Beyond, Wiley, Hoboken, NJ, USA, 2017.
[74]
M.A. Siddiqi, H. Yu, J. Joung, 5G ultra-reliable low-latency communication implementation challenges and operational issues with IoT devices, Electronics. (Basel) 8 (9) (2019) 981.
[75]
J. Zhao, “A survey of intelligent reflecting surfaces (IRSs): towards 6G wireless communication networks with massive MIMO 2.0,” 2019. [Online]. Available: arXiv:1907.04789.
[76]
K. Rikkinen, P. Kyosti, M.E. Leinonen, M. Berg, A. Parssinen, THz radio communication: link budget analysis toward 6G, IEEE Commun. Mag. 58 (11) (2020) 22–27.
[77]
M. Polese, J.M. Jornet, T. Melodia, M. Zorzi, Toward end-to-end, full-stack 6G terahertz networks, IEEE Commun. Mag. 58 (11) (2020) 48–54.
[78]
N. Chi, Y. Zhou, Y. Wei, F. Hu, Visible light communication in 6G: advances, challenges, and prospects, IEEE Veh. Technol. Mag. 15 (4) (2020) 93–102.
[79]
M. Kishk, A. Bader, M.-S. Alouini, Aerial base station deployment in 6G cellular networks using tethered drones: the mobility and endurance tradeoff, IEEE Veh. Technol. Mag. 15 (4) (2020) 103–111.
[80]
J. Du, C. Jiang, J. Wang, Y. Ren, M. Debbah, Machine learning for 6G wireless networks: carrying forward enhanced bandwidth, massive access, and ultrareliable/low-latency service, IEEE Veh. Technol. Mag. 15 (4) (2020) 122–134.
[81]
W. Hong, et al., The role of millimeter-wave technologies in 5G/6G wireless communications, IEEe J. Microw. 1 (1) (2021) 101–122,.
[82]
P. Porambage, G. Gür, D.P.M. Osorio, M. Liyanage, A. Gurtov, M. Ylianttila, The roadmap to 6G security and privacy, IEEE Open J. Commun. Soc. 2 (2021) 1094–1122,.
[83]
L. Wang, D. Han, M. Zhang, D. Wang, Z. Zhang, Deep reinforcement learning-based adaptive handover mechanism for VLC in a hybrid 6G network architecture, IEEe Access. 9 (2021) 87241–87250,.
[84]
R. Shrestha, R. Bajracharya, S. Kim, 6G enabled unmanned aerial vehicle traffic management: a perspective, IEEe Access. 9 (2021) 91119–91136,.
[85]
A. Salh, et al., A survey on deep learning for ultra-reliable and low-latency communications challenges on 6G wireless systems, IEEe Access. 9 (2021) 55098–55131,.
[86]
A. Jagannath, J. Jagannath, T. Melodia, Redefining wireless communication for 6G: signal processing meets deep learning with deep unfolding, IEEe Trans. Artif. Intell. 2 (6) (2021) 528–536,.
[87]
M.S.M. Gismalla, et al., Survey on device to device (D2D) communication for 5GB/6G networks: concept, applications, challenges, and future directions, IEEe Access. 10 (2022) 30792–30821,.
[88]
Y. Zhu, B. Mao, N. Kato, Intelligent reflecting surface in 6G vehicular communications: a survey, IEEE Open J. Veh. Technol. 3 (2022) 266–277,.
[89]
M. Noor-A-Rahim, et al., 6G for vehicle-to-everything (V2X) communications: enabling technologies, challenges, and opportunities, in: Proceedings of the IEEE, 110, 2022, pp. 712–734,.
[90]
G. Geraci, et al., What will the future of UAV cellular communications be? A flight from 5G to 6G, in: IEEE Communications Surveys & Tutorials, 24, 2022, pp. 1304–1335,. thirdquarter.
[91]
D. Serghiou, M. Khalily, T.W.C. Brown, R. Tafazolli, Terahertz channel propagation phenomena, measurement techniques and modeling for 6G wireless communication applications: a survey, open challenges and future research directions, in: IEEE Communications Surveys & Tutorials, 24, 2022, pp. 1957–1996,. Fourthquarter.
[92]
C. Yoon, D. Cho, Energy efficient beamforming and power allocation in dynamic TDD based C-RAN system, in: IEEE Communications Letters, 19, 2015, pp. 1806–1809,.
[93]
L. Li, N. Deng, W. Zhou, Environment-aware dynamic management for energy saving in MIMO-based C-RAN, IEEe Access. 7 (2019) 77514–77523,.
[94]
M.R. Aktar, A. Jahid, M.F. Hossain, Energy efficiency of renewable powered cloud radio access network, in: 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), 2018, pp. 348–353,.
[95]
B. Dai, W. Yu, Energy efficiency of downlink transmission strategies for cloud radio access networks, IEEE J. Sel. Areas Commun. 34 (4) (2016) 1037–1050,.
[96]
C. Hsu, J. Liang, K. Wu, J. Chen, Y. Tseng, Energy-efficient dynamic point selection for cloud radio access networks (C-RAN), in: 2017 IEEE Wireless Communications and Networking Conference (WCNC), 2017, pp. 1–6,.
[97]
B. Chen, J. Zhang, Q. Zhu, X. Wang, M. Gao, Energy-efficient traffic grooming in 5G C-RAN enabled flexible bandwidth optical networks, in: 2017 Asia Communications and Photonics Conference (ACP), 2017, pp. 1–3.
[98]
A. Checko, A.P. Avramova, M.S. Berger, H.L. Christiansen, Evaluating C-RAN fronthaul functional splits in terms of network level energy and cost savings, J. Commun. Netw. 18 (2) (2016) 162–172,.
[99]
J. Tan, Q. Zhang, T.Q.S. Quek, H. Shin, Robust energy efficiency maximization in multicast downlink C-RAN, in: IEEE Transactions on Vehicular Technology, 68, 2019, pp. 8951–8965,.
[100]
L. Wang, K. Wong, M. Elkashlan, A. Nallanathan, S. Lambotharan, Secrecy and energy efficiency in massive MIMO aided heterogeneous C-RAN: a new look at interference, in: IEEE Journal of Selected Topics in Signal Processing, 10, 2016, pp. 1375–1389,.
[101]
B. Tian, Q. Zhang, Y. Li, M. Tornatore, Joint optimization of survivability and energy efficiency in 5G C-RAN with mm-wave based RRH, IEEe Access. 8 (2020) 100159–100171,.
[102]
K. Wang, K. Yang, C.S. Magurawalage, Joint energy minimization and resource allocation in C-RAN with mobile cloud, in: IEEE Transactions on Cloud Computing, 6, 2018, pp. 760–770,.
[103]
L. Wang, S. Zhou, Flexible functional split and power control for energy harvesting cloud radio access networks, in: IEEE Transactions on Wireless Communications, 19, 2020, pp. 1535–1548,.
[104]
B.J.R. Sahu, S. Dash, N. Saxena, A. Roy, Energy-efficient BBU allocation for green C-RAN, in: IEEE Communications Letters, 21, 2017, pp. 1637–1640,.
[105]
S. Luo, R. Zhang, T.J. Lim, Downlink and uplink energy minimization through user association and beamforming in C-RAN, in: IEEE Transactions on Wireless Communications, 14, 2015, pp. 494–508,.
[106]
M. Zhu, J. Gu, X. Zeng, C. Yan, P. Gu, Delay-aware energy-saving strategies for BBU Pool in C-RAN: modeling and optimization, IEEe Access. 9 (2021) 63257–63266,.
[107]
T.T. Vu, D.T. Ngo, M.N. Dao, S. Durrani, D.H.N. Nguyen, R.H. Middleton, Energy efficiency maximization for downlink cloud radio access networks with data sharing and data compression, IEEe Trans. Wirel. Commun. 17 (8) (2018) 4955–4970,.
[108]
F. Tian, P. Zhang, Z. Yan, A survey on C-RAN security, IEEe Access. 5 (2017) 13372–13386,.
[109]
P. Chanclou, L.A. Neto, K. Grzybowski, Z. Tayq, F. Saliou, N. Genay, Mobile fronthaul architecture and technologies: a RAN equipment assessment [invited], IEEE/OSA J. Opt. Commun. Netw. 10 (1) (2018) A1–A7,.
[110]
C. Lim, Y. Tian, C. Ranaweera, T.A. Nirmalathas, E. Wong, K. Lee, Evolution of radio-over-fiber technology, in: Journal of Lightwave Technology, 37, 2019, pp. 1647–1656,. 15 March15.
[111]
J. Zou, S. Adrian Sasu, M. Lawin, A. Dochhan, J.-P. Elbers, M. Eiselt, Advanced optical access technologies for next-generation (5G) mobile networks [Invited], in: IEEE/OSA Journal of Optical Communications and Networking, 12, 2020, pp. D86–D98,.
[112]
L. You, D. Yuan, User-centric performance optimization with remote radio head cooperation in C-RAN, in: IEEE Transactions on Wireless Communications, 19, 2020, pp. 340–353,.
[113]
J. Luo, Q. Chen, L. Tang, Reducing power consumption by joint sleeping strategy and power control in delay-aware C-RAN, IEEe Access. 6 (2018) 14655–14667,.
[114]
W. Zhao, S. Wang, Traffic density-based RRH selection for power saving in C-RAN, in: IEEE Journal on Selected Areas in Communications, 34, 2016, pp. 3157–3167,.
[115]
C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, C. Lim, 5G C-RAN with optical fronthaul: an analysis from a deployment perspective, in: Journal of Lightwave Technology, 36, 2018, pp. 2059–2068,. 1 June1.
[116]
M.A. Hasabelnaby, H.A.I. Selmy, M.I. Dessouky, Joint optimal transceiver placement and resource allocation schemes for redirected cooperative hybrid FSO/mmW 5G fronthaul networks, in: IEEE/OSA Journal of Optical Communications and Networking, 10, 2018, pp. 975–990,.
[117]
Z. Xu, C. Yang, Z. Tan, H. Guo, F. Zhang, AMCC superimposition and extraction with interference elimination for 5G mobile fronthaul, in: IEEE Photonics Technology Letters, 30, 2018, pp. 1214–1217,. 1 July1.
[118]
M.A. Esmail, A.M. Ragheb, H.A. Fathallah, M. Altamimi, S.A. Alshebeili, 5G-28 GHz signal transmission over hybrid all-optical FSO/RF link in dusty weather conditions, in: IEEE Access, 7, 2019, pp. 24404–24410,.
[119]
H. Niu, C. Li, A. Papathanassiou, G. Wu, RAN architecture options and performance for 5G network evolution, in: 2014 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 2014, pp. 294–298,.
[120]
A. Chagdali, S.E. Elayoubi, A.M. Masucci, Impact of slice function placement on the performance of URLLC with redundant coverage, in: 2020 16th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 2020, pp. 1–6,.
[121]
M. Fathy, B. Mokhtar, M.A. Abdou, M.R.M. Rizk, Extended study towards performance improvement of Cloud-RAN, in: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC, 2017, pp. 1061–1066,.
[122]
F.A. Khan, H. He, J. Xue, T. Ratnarajah, Performance analysis of cloud radio access networks with distributed multiple antenna remote radio heads, in: IEEE Transactions on Signal Processing, 63, 2015, pp. 4784–4799,. Sept.15.
[123]
R.R. Reyes, S. Sultana, V.V. Pai, T. Bauschert, Analysis and evaluation of CAPEX and OPEX in intra-data centre network architectures, in: 2019 IEEE Latin-American Conference on Communications (LATINCOM), 2019, pp. 1–6,.
[124]
A. Udalcovs, et al., Total cost of ownership of digital vs. analog radio-over-fiber architectures for 5G fronthauling, in: IEEE Access, 8, 2020, pp. 223562–223573,.
[125]
R.I. Rony, E. Lopez-Aguilera, E. Garcia-Villegas, Cost analysis of 5G fronthaul networks through functional splits at the PHY layer in a capacity and cost limited scenario, in: IEEE Access, 9, 2021, pp. 8733–8750,.
[126]
P. Lin, P. Ma, Y. Ma, W. Han, Cost efficient power allocation, user association and energy management in H-Cran with hybrid energy sources, in: 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), 2019, pp. 1–7,.
[127]
L. Chen, et al., Complementary base station clustering for cost-effective and energy-efficient cloud-RAN, in: 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2017, pp. 1–7,.
[128]
O. Arouk, T. Turletti, N. Nikaein, K. Obraczka, Cost optimization of cloud-RAN planning and provisioning for 5G networks, in: 2018 IEEE International Conference on Communications (ICC), 2018, pp. 1–6,.
[129]
M. Peng, et al., Hierarchical cooperative relay based heterogeneous networks, IEEe Wirel. Commun. 18 (3) (Jun. 2011) 48–56.
[130]
P. Xia, et al., Downlink coordinated multi-point with overhead modelling in heterogeneous cellular networks, IEEe Trans. Wirel. Commun. 12 (8) (Aug. 2013) 4025–4037.
[131]
S.C. Hung, H. Hsu, S.Y. Lien, K.C. Chen, Architecture harmonization between cloud radio access networks and fog networks, IEEe Access. 3 (2015) 3019–3034.
[132]
C. Ran, S. Wang, C. Wang, Balancing backhaul load in heterogeneous cloud radio access networks, IEEe Wirel. Commun. 22 (3) (2015) 42–48.
[133]
R. Irmer, et al., Coordinated multipoint: concepts, performance, and field trial results, IEEE Commun. Mag. 49 (2) (2011) 102–111.
[134]
I. C, et al., Toward green and soft: a 5G perspective, IEEE Commun. Mag. 52 (2) (2014) 66–73.
[135]
G.M.S. Rahman, M. Peng, K. Zhang, S. Chen, Radio resource allocation for achieving ultra-low latency in fog radio access networks, in: IEEE Access, 6, 2018, pp. 17442–17454,.
[136]
M. Peng, S. Yan, K. Zhang, C. Wang, Fog-computing-based radio access networks: issues and challenges, in: IEEE Network, 30, 2016, pp. 46–53,.
[137]
M. Kaneko, I. Randrianantenaina, H. Dahrouj, H. Elsawy, M.-S. Alouini, On the opportunities and challenges of NOMA-based fog radio access networks: an overview, IEEe Access. 8 (2020) 205467–205476,.
[138]
M. Peng, K. Zhang, Recent advances in fog radio access networks: performance analysis and radio resource allocation, IEEe Access. 4 (2016) 5003–5009,.
[139]
P. Rahimi, C. Chrysostomou, H. Pervaiz, V. Vassiliou and Q. Ni, "Joint radio resource allocation and beamforming optimization for industrial IoT in SDN-based virtual fog-RAN 5G-and-beyond wireless environments," in IEEE Transactions on Industrial Informatics, doi: 10.1109/TII.2021.3126813.
[140]
Y. Ma, H. Wang, J. Xiong, J. Diao, D. Ma, Joint allocation on communication and computing resources for fog radio access Networks, IEEe Access. 8 (2020) 108310–108323,.
[141]
T.C. Chiu, W.-H. Chung, A.-C. Pang, Y.-J. Yu, P.-H. Yen, Ultra-low latency service provision in 5G fog-radio access networks, in: Proc. IEEE 27th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun, Valencia, Spain, 2016, p. 16.
[142]
R.S. Alhumaima, Energy efficiency and latency analysis of fog networks, China Commun. 17 (4) (2020) 66–77,.
[143]
Y. Jiang, et al., Analysis and optimization of fog radio access networks with hybrid caching: delay and energy efficiency, in: IEEE Transactions on Wireless Communications, 20, 2021, pp. 69–82,.
[144]
H. Zhang, X. Liu, K. Long, A. Nallanathan, V.C.M. Leung, Energy efficient resource allocation and caching in fog radio access networks, in: 2018 IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–6,.
[145]
Z. Yan, M. Peng, M. Daneshmand, Cost-aware resource allocation for optimization of energy efficiency in fog radio access networks, in: IEEE Journal on Selected Areas in Communications, 36, 2018, pp. 2581–2590,.
[146]
Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, M. Zhou, MEETS: maximal energy efficient task scheduling in homogeneous fog networks, in: IEEE Internet of Things Journal, 5, 2018, pp. 4076–4087,.
[147]
K. Wang, J. Li, Y. Yang, W. Chen, L. Hanzo, Content-centric heterogeneous fog networks relying on energy efficiency optimization, in: IEEE Transactions on Vehicular Technology, 69, 2020, pp. 13579–13592,.
[148]
A. Helmy, A. Nayak, Energy-efficient decentralized framework for the integration of fog with optical access networks, in: IEEE Transactions on Green Communications and Networking, 4, 2020, pp. 927–938,.
[149]
J. Li, et al., Service migration in fog computing enabled cellular networks to support real-time vehicular communications, in: IEEE Access, 7, 2019, pp. 13704–13714,.
[150]
H. Zhang, Y. Qiu, X. Chu, K. Long, V.C.M. Leung, Fog radio access networks: mobility management, interference mitigation, and resource optimization, in: IEEE Wireless Communications, 24, 2017, pp. 120–127,.
[151]
M. Waqas, Y. Niu, M. Ahmed, Y. Li, D. Jin, Z. Han, Mobility-aware fog computing in dynamic environments: understandings and implementation, in: IEEE Access, 7, 2019, pp. 38867–38879,.
[152]
D. Wang, Z. Liu, X. Wang, Y. Lan, Mobility-aware task offloading and migration schemes in fog computing networks, in: IEEE Access, 7, 2019, pp. 43356–43368,.
[153]
Y. Lu, et al., A multi-migration seamless handover scheme for vehicular networks in fog-based 5G optical fronthaul, in: 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), 2019, pp. 1–3,.
[154]
D. Chitimalla, K. Kondepu, L. Valcarenghi, M. Tornatore, B. Mukherjee, 5G fronthaul-latency and jitter studies of CPRI over ethernet, in: Journal of Optical Communications and Networking, 9, 2017, pp. 172–182,.
[155]
L. Wang, W. Huang, Y. Fan, X. Wang, Priority-based cell selection for mobile equipments in heterogeneous cloud radio access networks, in: Proc. Int. Conf. Connected Vehicles Expo, Shenzhen, China, 2015, pp. 62–67.
[156]
Y. Li, T. Jaing, K. Luo, S. Mao, Green heterogeneous cloud radio access networks: potential techniques, performance trade-offs, and chal lenges, IEEE Commun. Mag. 55 (11) (2017) 33–39.
[157]
M. Peng, K. Zhang, J. Jiang, J. Wang, W. Wang, Energy efficient resource assignment and power allocation in heterogeneous cloud radio access networks, IEEE Trans. Veh. Technol. 64 (11) (2015) 5275–5287.
[158]
M. Peng, Y. Li, Z. Zhao, C. Wang, System architecture and key technologies for 5G heterogeneous cloud radio access networks, IEEE Netw. 29 (2) (2015) 6–14.
[159]
S. Lien, S.-C. Hung, H. Hsu, K.-C. Chen, Collaborative radio access of heterogeneous cloud radio access networks and edge computing networks, in: Proc. IEEE Int. Conf. Commun. Workshops, Kuala Lumpur, Malaysia, 2016, pp. 193–199.
[160]
M. Peng, Y. Li, J. Jiang, J. Li, C. Wang, Heterogeneous cloud radio access networks: a new perspective for enhancing spectral and energy efficiencies, IEEE Wirel. Commun. 21 (6) (2014) 126–135.
[161]
Y. Li, T. Jaing, K. Luo, S. Mao, Green heterogeneous cloud radio access networks: potential techniques, performance trade-offs, and challenges, IEEE Commun. Mag. 55 (11) (2017) 33–39.
[162]
R.S. Alhumaima, M. Khan, H.S. Al-Raweshidy, Modelling the energy efficiency of heterogeneous cloud radio access networks, in: Proc. Int. Conf. Emerg. Technol, Peshawar, Pakistan, 2015, pp. 1–6.
[163]
R.S. Alhumaima, M. Khan, H.S. Al-Raweshidy, Power model for heterogeneous cloud radio access networks, in: Proc. IEEE Int. Conf. Data Sci. Data Intensive Syst, Sydney, NSW, Australia, 2015, pp. 260–267.
[164]
M.A. Habibi, M. Nasimi, B. Han, H.D. Schotten, A comprehensive survey of RAN architectures toward 5G mobile communication system, IEEe Access. 7 (2019) 70371–70421,.
[165]
Common Public Radio Interface (CPRI), Interface specification, C. Parties (2018) rel. V7.0, [Online]. Available http://www.cpri.info/spec.html.
[166]
X. Liu, H. Zeng, N. Chand, F. Effenberger, CPRI-compatible efficient mobile fronthaul transmission via equalized TDMA achieving 256 Gb/s CPRI-equivalent data rate in a single 10-GHz-bandwidth IMDD channel, in: 2016 Optical Fiber Communications Conference and Exhibition (OFC), 2016, pp. 1–3.
[167]
M. Sung, C. Han, S.H. Cho, H.S. Chung, S.M. Kim, J.H. Lee, Bandwidth efficient transmission of 96 LTE-A signals with 118-Gb/s CPRI-equivalent rate using 2-GHz frequency span and intermixing mitigation for mobile fronthaul, in: 2016 International Conference on Information and Communication Technology Convergence (ICTC), 2016, pp. 775–777.
[168]
X. Liu, H. Zhang, K. Long, A. Nallanathan, V.C.M. Leung, Energy efficient user association, resource allocation and caching deployment in fog radio access networks, in: IEEE Transactions on Vehicular Technology, 71, 2022, pp. 1846–1856,.
[169]
N. Yoshimoto, J.I. Kani, S.Y. Kim, N. Iiyama, J. Terada, DSPbased optical access approaches for enhancing NG-PON2 systems, IEEE Commun. Mag. 51 (3) (2013) 58–64.
[170]
N. Shibata, T. Tashiro, S. Kuwano, N. Yuki, Y. Fukada, J. Terada, A. Otaka, Performance evaluation of mobile front-haul employing Ethernet- based TDM-PON with IQ data compression [Invited], IEEE/OSA J. Opt. Commun. Netw. 7 (11) (2015) B16–B22.
[171]
Y. Nakayama, K. Maruta, T. Shimada, T. Yoshida, J. Terada, A. Otaka, Utilization comparison of small-cell accommodation with PON-based mobile fronthaul, IEEE/OSA J. Opt. Commun. Netw. 8 (12) (2016) 919–927.
[172]
S. Lee, S.H. Cho, J.H. Lee, Future-proof optical-mobile converged access network based on integration of PON with RoF technologies, in: Microwave Photonics (MWP) and the 2014 9th Asia- Pacific Microwave Photonics Conference (APMP), 2014 International Topical Meeting on, 2014, pp. 409–411.
[173]
M. Hajduczenia, H.J.A.D. Silva, P.P. Monteiro, Development of 10 Gb/s EPON in IEEE 802.3av, IEEE Commun. Mag. 46 (7) (2008) 40–47.
[174]
S.V. Pato, R. Meleiro, D. Fonseca, P. Andre, P. Monteiro, H. Silva, All-optical burst-mode power equalizer based on cascaded SOAs for 10-Gb/s EPONs, IEEE Photonics Technol. Lett. 20 (24) (2008) 2078–2080.
[175]
M. Emmendorfer, Comparing IEEE EPON & FSAN/ITU-T GPON family of technologies, ARRIS Enterprises, Tech. Rep. (2014) [Online]. Available https://www.arris.com/globalassets/resources/white-papers/arris-comparing-ieeee-pon-and-fsan-wp.pdf.
[176]
M. Hajduczenia, H.J.A. da Silva, P.P. Monteiro, 10G EPON development process, in: 2007 9th International Conference on Transparent Optical Networks, 1, 2007, pp. 276–282.
[177]
A. Vukovic, M. Savoie, H. Hua, and K. Maamoun, “Performance characterization of PON technologies,” pp. 6796-7, 2007. [Online]. Available: https://doi.org/10.1117/12.778943.
[178]
M. Emmendorfer, Optical wavelength considerations for NG EPON, Alcatel-Lucent, Tech. Rep. (2014) [Online]. Available http://www.ieee802.org/3/adhoc/ngepon/public/jan14/powell-ngepon-01A-0114.pdf.
[179]
J.S. Wey, D. Nesset, M. Valvo, K. Grobe, H. Roberts, Y. Luo, J. Smith, Physical layer aspects of NG-PON2 standards- Part 1: optical link design [Invited], IEEE/OSA J. Opt. Commun. Netw. 8 (1) (2016) 33–42.
[180]
Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, Y. Ma, Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2), J. Lightwave Technol. 31 (4) (2013) 587–593.
[181]
F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, M. Maier, Capacity and delay analysis of next-generation passive optical networks (NG-PONs), IEEE Trans. Commun. 59 (5) (2011) 1378–1388.
[182]
D. Nesset, NG-PON2 technology and standards, J. Lightwave Technol. 33 (5) (2015) 1136–1143.
[183]
N. Kaneda, R. Zhang, Y. Lefevre, A. Mahadevan, D. van Veen, V. Houtsma, Experimental demonstration of flexible information rate PON beyond 100 Gb/s with probabilistic and geometric shaping, J. Opt. Commun. Netw. 14 (1) (2022) A23–A30,.
[184]
W. Wang, et al., 100 Gbit/s/λ DMT-PON system based on intensity modulation and heterodyne coherent detection, in: IEEE Photonics Technology Letters, 33, 2021, pp. 1014–1017,. 15 Sept.15.
[185]
L.M.P. Larsen, A. Checko, H.L. Christiansen, A survey of the functional splits proposed for 5G mobile crosshaul networks, IEEE Commun. Surv. Tutor. 21 (1) (2019) 146–172,. Firstquarter.
[186]
S. Lee, S.H. Cho, J.H. Lee, Future-proof optical-mobile converged access network based on integration of PON with RoF technologies, in: Microwave Photonics (MWP) and the 2014 9th Asia- Pacific Microwave Photonics Conference (APMP), 2014 International Topical Meeting on, 2014, pp. 409–411.
[187]
W. Ji, J. Chang, The radio-on-fiber-wavelength-division multiplexed- passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing, Opt. Laser. Technol. 49 (2013) 301–306.
[188]
P.P. Monteiro, D. Viana, J. da Silva, D. Riscado, M. Drummond, A.S.R. Oliveira, N. Silva, P. Jesus, Mobile fronthaul RoF transceivers for C-RAN applications, in: 2015 17th International Conference on Transparent Optical Networks (ICTON), 2015, pp. 1–4.
[189]
H.-Y. Kao, S. Ishimura, K. Tanaka, K. Nishimura, R. Inohara, End-to-end demonstration of fiber-wireless fronthaul networks using a hybrid multi-IF-over-fiber and radio-over-fiber system, IEEe Photonics. J. 13 (4) (2021) 1–6,. Art no. 7301106.
[190]
Y. Su, H. Gao, S. Zhang, Energy-efficient resource management for CCFD massive MIMO systems in 6G networks, J. Syst. Eng. Electr. 33 (4) (2022) 877–886,.
[191]
L. You, J. Xiong, D.W.K. Ng, C. Yuen, W. Wang, X. Gao, Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission, in: IEEE Transactions on Signal Processing, 69, 2021, pp. 1407–1421,.
[192]
L. Pang, et al., Energy-efficient resource optimization for hybrid energy harvesting massive MIMO systems, IEEe Syst. J. 16 (1) (2022) 1616–1626,.
[193]
V. Sharma, J. Yaswanth, S.K. Singh, S. Biswas, K. Singh, F. Khan, A pricing-based approach for energy-efficiency maximization in RIS-aided multi-user MIMO SWIPT-enabled wireless networks, IEEe Access. 10 (2022) 29132–29148,.
[194]
M. Bashar, et al., Uplink spectral and energy efficiency of cell-free massive MIMO with optimal uniform quantization, in: IEEE Transactions on Communications, 69, 2021, pp. 223–245,.
[195]
A. Haqiqatnejad, F. Kayhan, B. Ottersten, Energy-efficient hybrid symbol-level precoding for large-scale mmwave multiuser MIMO systems, IEEE Trans. Commun. 69 (5) (2021) 3119–3134,.
[196]
L. Zhao, S. Yang, X. Chi, W. Chen, S. Ma, Achieving energy-efficient uplink URLLC with MIMO-aided grant-free access, in: IEEE Transactions on Wireless Communications, 21, 2022, pp. 1407–1420,.
[197]
H. Yan, A. Ashikhmin, H. Yang, A scalable and energy-efficient IoT system supported by cell-free massive MIMO, IEEe Internet. Things. J. 8 (19) (2021) 14705–14718,. 1 Oct.1.
[198]
T. Choi, et al., Energy efficiency of uplink cell-free massive MIMO with transmit power control in measured propagation channel, IEEe Open. J. Circuits. Syst. 2 (2021) 792–804,.
[199]
L. Chen, B. Hu, G. Xu, S. Chen, Energy-efficient power allocation and splitting for mmWave beamspace MIMO-NOMA With SWIPT, in: IEEE Sensors Journal, 21, 2021, pp. 16381–16394,. 15 July15.
[200]
A. Hilario-Tacuri, A. Tamo, BER performance of mm-Wave based systems in rainfall scenarios, in: Proc. Int. Conf. Electron., Electr. Eng. Comput. (INTERCON), 2018, pp. 1–4.
[201]
Y. Zhang, Q. Cui, N. Wang, Energy efficiency maximization for CoMP joint transmission with non-ideal power amplifiers, in: Proc. IEEE 28th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), 2017, pp. 1–6.
[202]
L. Zhao, K. Zheng, H. Long, H. Zhao, Performance analysis for downlink massive MIMO system with ZF precoding, Trans. Emerg. Telecommun. Technol. 25 (12) (2014) 1219–1230.
[203]
V.P. Selvan, M.S. Iqbal, H.S. Al-Raweshidy, Performance analysis of linear precoding schemes for very large multi-user MIMO downlink system, Proc. 4th, Ed., Int. Conf. Innov. Comput, Technol. (INTECH), 2014, pp. 219–224.
[204]
P. SinghParihar, R. Saraswat, S. Maheshwari, Energy and spectral efficiency of very large multiuser MIMO systems, Int. J. Comput. Appl. 111 (5) (2015) 4–7.
[205]
Y. Huang, S. He, J. Wang, J. Zhu, Spectral and energy efficiency tradeoff for massive MIMO, IEEE Trans. Veh. Technol. 67 (8) (2018) 6991–7002.
[206]
J. Tang, D.K.C. So, E. Alsusa, K.A. Hamdi, Resource efficiency: a new paradigm on energy efficiency and spectral efficiency tradeoff, IEEE Trans. Wirel. Commun. 13 (8) (2014) 4656–4669.
[207]
J. Zhang, X. Yu, K.B. Letaief, Hybrid beamforming for 5G and beyond millimeter-wave systems: a holistic view, IEEE Open J. Commun. Soc. 1 (2020) 77–91.
[208]
I. Altoobchi, M.A. Mangoud, Investigations of beamforming designs and millimeter wave channel modeling for multiuser MIMO systems, in: Proc. 9th IEEE-GCC Conf. Exhib. (GCCCE), 2017, pp. 1–5.
[209]
T. Kebede, Y. Wondie, J. Steinbrunn, Performance evaluation of MillimeterWave-massive MIMO with beamforming techniques, in: Proc. Int. Symp. Netw., Comput. Commun. (ISNCC), 2021, pp. 1–8.
[210]
I. Ahmed, H. Khammari, A. Shahid, A. Musa, K.S. Kim, E. De Poorter, I. Moerman, A survey on hybrid beamforming techniques in 5G: architecture and system model perspectives, IEEE Commun. Surv. Tuts. 20 (4) (2018) 3060–3097. 4th Quart.
[211]
R. Li, T. Chen, L. Fan, A. Dang, Performance analysis of a multiuser dual-hop amplify-and-forward relay system with FSO/RF links, in: Journal of Optical Communications and Networking, 11, 2019, pp. 362–370,.
[212]
O.M.S. Al-Ebraheemy, A.M. Salhab, A. Chaaban, S.A. Zummo, M. Alouini, Precise performance analysis of dual-hop mixed RF/Unified-FSO DF relaying with heterodyne detection and two IM-DD channel models, IEEe Photonics. J. 11 (1) (2019) 1–22,. Art no. 7900522.
[213]
S. Sharma, A.S. Madhukumar, R. Swaminathan, Effect of pointing errors on the performance of hybrid FSO/RF networks, IEEe Access. 7 (2019) 131418–131434,.
[214]
S. Nath, S. Sengar, S.K. Shrivastava, S.P. Singh, Impact of atmospheric turbulence, pointing error, and traffic pattern on the performance of cognitive hybrid FSO/RF system, in: IEEE Transactions on Cognitive Communications and Networking, 5, 2019, pp. 1194–1207,.
[215]
Z. Wang, W. Shi, W. Liu, Two-way mixed RF/FSO relaying system in the presence of Co-channel interference, IEEe Photonics. J. 11 (2) (2019) 1–16,. Art no. 7902516.
[216]
W.A. Alathwary, E.S. Altubaishi, On the performance analysis of decode-and-forward multi-hop hybrid FSO/RF systems with hard-switching configuration, IEEe Photonics. J. 11 (6) (2019) 1–12,. Art no. 7907012.
[217]
T. Rakia, F. Gebali, H. Yang, M. Alouini, Performance analysis of multiuser FSO/RF network under non-equal priority with P-persistence protocol, in: IEEE Transactions on Wireless Communications, 19, 2020, pp. 1802–1813,.
[218]
A.A. Ibrahim, S.O. Ata, Lutfiye Durak-Ata” performance of FSO communication systems employing Alamouti-type space-time encoding over Málaga channels with pointing errors, IEEE Photonics J., 10.1109/JPHOT 14 (1) (2022) (1-8), (2022).
[219]
Chen, et al., A novel energy harvesting scheme for mixed FSO-RF relaying systems, in: IEEE Transactions on Vehicular Technology, 68, 2019, pp. 8259–8263,.
[220]
H. Arezumand, H. Zamiri-Jafarian, E. Soleimani-Nasab, Exact and asymptotic analysis of partial relay selection for cognitive RF-FSO systems with non-zero boresight pointing errors, IEEe Access. 7 (2019) 58611–58625,.
[221]
G.N. Kamga, S. Aïssa, T.R. Rasethuntsa, M.-S. Alouini, Mixed RF/FSO communications with outdated-CSI-based relay selection under double generalized gamma turbulence, generalized pointing errors, and Nakagami-m fading, IEEe Trans. Wirel. Commun. 20 (5) (2021) 2761–2775,.
[222]
S. Huang, V. Shah-Mansouri, M. Safari, Game-theoretic spectrum trading in RF relay-assisted free-space optical communications, IEEe Trans. Wirel. Commun. 18 (10) (2019) 4803–4815,.
[223]
Z. Wang, W. Shi, W. Liu, Performance analysis of mixed RF/FSO system with CCI, IET Commun. 13 (2019) 2199–2206,.
[224]
N. Varshney, P. Puri, Performance analysis of decode-and-forward-based mixed MIMO-RF/FSO cooperative systems with source mobility and imperfect CSI, J. Lightwave Technol. 35 (11) (2017) 2070–2077,. 1 June1.
[225]
Y. Zhao, W. Shi, H. Shi, W. Liu, Z. Wang, J. Zhang, Resource allocation for hybrid RF/FSO multi-channel multi-radio wireless mesh networks, IEEe Access. 8 (2020) 9358–9370,.
[226]
H. Lei, et al., On secure mixed RF-FSO systems with TAS and imperfect CSI, in: IEEE Transactions on Communications, 68, 2020, pp. 4461–4475,.
[227]
Z. Hu, C. Chen, Z. Zhang, H. Zhang, Secure cooperative transmission for mixed RF/FSO spectrum sharing networks, in: IEEE Transactions on Communications, 68, 2020, pp. 3010–3023,.
[228]
O.M.S. Al-Ebraheemy, A.M. Salhab, M. El-Absi, S.A. Zummo, S.S. Ikki, Performance analysis of mixed interference aligned MIMO RF/unified FSO DF relaying with heterodyne detection and two IMDD models, IEEe Access. 8 (2020) 93297–93308,.
[229]
A. Upadhya, V.K. Dwivedi, G.K. Karagiannidis, On the effect of interference and misalignment error in mixed RF/FSO systems over generalized fading channels, in: IEEE Transactions on Communications, 68, 2020, pp. 3681–3695,.
[230]
E. Erdogan, N. Kabaoglu, I. Altunbas, H. Yanikomeroglu, On the error probability of cognitive RF-FSO relay networks over Rayleigh/EW fading channels with primary-secondary interference, IEEe Photonics. J. 12 (1) (2020) 1–13,. Art no. 7900313.
[231]
Escudero-Garzás, J.J. and Céspedes, M.M. (2022). Orthogonal Multiple Access. In Wiley 5G Ref (eds R. Tafazolli, C.-L. Wang and P. Chatzimisios). https://doi.org/10.1002/9781119471509.w5GRef028.
[232]
G. Femenias, F. Riera-Palou, X. Mestre, J.J. Olmos, Downlink scheduling and resource allocation for 5G MIMO-multicarrier: OFDM vs FBMC/OQAM, IEEe Access. 5 (2017) 13770–13786,.
[233]
G. Kongara, C. He, L. Yang, J. Armstrong, A comparison of CP-OFDM, PCC-OFDM and UFMC for 5G uplink communications, IEEe Access. 7 (2019) 157574–157594,.
[234]
Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, L. Hanzo, Non-orthogonal multiple access for 5G and beyond, in: Proc. IEEE, 105, 2017, pp. 2347–2381.
[235]
L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, L. Hanzo, A survey of non-orthogonal multiple access for 5G, IEEE Commun. Surveys Tuts. 20 (3) (2018) 2294–2323. 3rd Quart.
[236]
L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, L. Hanzo, A survey of non-orthogonal multiple access for 5G, IEEE Commun. Surv. Tuts. 20 (3) (2018) 2294–2323. 3rd Quart.
[237]
A.F.M.S. Shah, A.N. Qasim, M.A. Karabulut, H. Ilhan, M.B. Islam, Survey and performance evaluation of multiple access schemes for next-generation wireless communication systems, IEEe Access. 9 (2021) 113428–113442,.
[238]
Z. Yuan, G. Yu, W. Li, Y. Yuan, X. Wang, J. Xu, Multi-user shared access for Internet of Things, in: Proc. IEEE 83rd Veh. Technol. Conf. (VTC Spring), 2016, pp. 1–5.
[239]
Y. Al-Eryani, E. Hossain, The D-OMA method for massive multiple access in 6G: performance, security, and challenges, in: IEEE Vehicular Technology Magazine, 14, 2019, pp. 92–99,.
[240]
H.Q. Ngo, L.-N. Tran, T.Q. Duong, M. Matthaiou, E.G. Larsson, On the total energy efficiency of cell-free massive MIMO, IEEe Trans. Green. Commun. Netw. 2 (1) (2018) 25–39,.
[241]
Z. Liu, J. Li, D. Sun, Circuit power consumption-unaware energy efficiency optimization for massive MIMO systems, in: IEEE Wireless Communications Letters, 6, 2017, pp. 370–373,.
[242]
V. Khodamoradi, et al., Optimal energy efficiency based power adaptation for downlink multi-cell massive MIMO systems, IEEe Access. 8 (2020) 203237–203251,.
[243]
L. You, J. Xiong, X. Yi, J. Wang, W. Wang, X. Gao, Energy efficiency optimization for downlink massive MIMO with statistical CSIT, in: IEEE Transactions on Wireless Communications, 19, 2020, pp. 2684–2698,.
[244]
Y. Huang, S. He, J. Wang, J. Zhu, Spectral and energy efficiency tradeoff for massive MIMO, in: IEEE Transactions on Vehicular Technology, 67, 2018, pp. 6991–7002,.
[245]
S. Zhang, et al., Energy-efficient massive MIMO with decentralized precoder design, in: IEEE Transactions on Vehicular Technology, 69, 2020, pp. 15370–15384,.
[246]
G. Dong, H. Zhang, S. Jin, D. Yuan, Energy-efficiency-oriented joint user association and power allocation in distributed massive MIMO systems, in: IEEE Transactions on Vehicular Technology, 68, 2019, pp. 5794–5808,.
[247]
Z. Wang, X. Yang, X. Wan, X. Yang, Z. Fan, Energy efficiency optimization for wireless power transfer enabled massive MIMO systems with hardware impairments, IEEe Access. 7 (2019) 113131–113140,.
[248]
Y. Zhang, J. Tang, L. Pang, Y. Guo, Y. Chen, J. Li, Energy efficiency optimization for compact massive MIMO wireless systems, in: IEEE Transactions on Vehicular Technology, 71, 2022, pp. 3303–3308,.
[249]
W. Jiang, H.D. Schotten, Multi-antenna fading channel prediction empowered by artificial intelligence, in: Proc. IEEE Veh. Technol. Conf. (VTC), Chicago, IL, USA, 2018, pp. 1–6.
[250]
W. Jiang, M. Strufe, H.D. Schotten, A SON decision-making framework for intelligent management in 5G mobile networks, in: Proc. IEEE Int. Conf. Comput. Commun. (ICCC), Chengdu, China, 2017, pp. 1158–1162.
[251]
W. Jiang, H.D. Schotten, Deep learning for fading channel prediction, IEEE Open J. Commun. Soc. 1 (2020) 320–332.
[252]
Zhang, J. Liu, H. Guo, M. Qi, N. Kato, Envisioning device-todevice communications in 6G, IEEE Netw. 34 (3) (2020) 86–91.
[253]
M. Elsayed, M. Erol-Kantarci, AI-enabled future wireless networks: challenges, opportunities, and open issues, IEEE Veh. Technol. Mag. 14 (3) (2019) 70–77.
[254]
H. Gacanin, Autonomous wireless systems with artificial intelligence: A knowledge management perspective, IEEE Veh. Technol. Mag. 14 (3) (2019) 51–59.
[255]
O. Kodheli, E. Lagunas, N. Maturo, S.K. Sharma, B. Shankar, J.F. Mendoza Montoya, J.C. Merlano Duncan, D. Spano, S. Chatzinotas, S. Kisseleff, J. Querol, L. Lei, T.X. Vu, G. Goussetis, Satellite communications in the new space era: a survey and future challenges, ArXiv. (2020) :2002.08811.
[256]
F. Tschorsch, B. Scheuermann, Bitcoin and beyond: a technical survey on decentralized digital currencies, IEEE Commun. Surv. Tuts. 18 (3) (2016) 2084–2123. 3rd Quart.
[257]
H.-N. Dai, Z. Zheng, Y. Zhang, Blockchain for internet of things: a survey, IEEe Internet. Things. J. 6 (5) (2019) 8076–8094.
[258]
D.C. Nguyen, P.N. Pathirana, M. Ding, A. Seneviratne, Blockchain for 5G and beyond networks: a state of the art survey, J. Netw. Comput. Appl. 166 (2020) 1–38.
[259]
A. Younis, T.X. Tran, D. Pompili, Bandwidth and energy-aware resource allocation for cloud radio access networks, in: IEEE Transactions on Wireless Communications, 17, 2018, pp. 6487–6500.
[260]
A. Younis, C. Sun, D. Pompili, Communication-efficient federated learning design with fronthaul awareness in NG-RANs, in: 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS), Denver, CO, USA, 2022, pp. 599–605.
[261]
S. Zhou, X. Liu, F. Effenberger, J. Chao, Low-latency high-efficiency mobile fronthaul with TDM-PON (mobile-PON), J. Opt. Commun. Netw. 10 (1) (2018) A20–A26.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computer Networks: The International Journal of Computer and Telecommunications Networking
Computer Networks: The International Journal of Computer and Telecommunications Networking  Volume 247, Issue C
Jun 2024
526 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 18 July 2024

Author Tags

  1. Fifth generation (5G)
  2. Beyond 5G (B5G)
  3. Cloud radio network (C-RAN)
  4. Free space optical (FSO) communication
  5. Passive optical network (PON)
  6. RF/FSO technology
  7. Software defined network (SDN)

Qualifiers

  • Short-survey

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media