Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

1-planarity testing and embedding: : An experimental study

Published: 01 January 2023 Publication History

Abstract

Many papers study the natural problem of drawing nonplanar graphs with few crossings per edge. In particular, a graph is 1-planar if it can be drawn in the plane with at most one crossing per edge. Unfortunately, while testing graph planarity is solvable in linear time and several efficient algorithms have been described in the literature, deciding whether a graph is 1-planar is NP-complete, even for restricted classes of graphs. Despite some polynomial-time algorithms are known for recognizing specific subfamilies of 1-planar graphs, there is still a lack of practical 1-planarity testing algorithms and no implementation is available for general graphs. This paper investigates the feasibility of a 1-planarity testing and embedding algorithm based on a backtracking strategy. Our contribution provides initial indications that have the potential to stimulate further research on the design of practical approaches for the 1-planarity testing problem. On the one hand, our experiments show that a backtracking strategy can be successfully applied to graphs with up to 30 vertices. On the other hand, our study suggests that alternative techniques are needed to attack larger graphs.

References

[1]
C. Binucci, W. Didimo, F. Montecchiani, An experimental study of a 1-planarity testing and embedding algorithm, in: WALCOM, in: LNCS, vol. 12049, Springer, 2020, pp. 329–335.
[2]
D. Eppstein, Diameter and treewidth in minor-closed graph families, Algorithmica 27 (3) (2000) 275–291.
[3]
D. Eppstein, S. Gupta, Crossing patterns in nonplanar road networks, in: SIGSPATIAL/GIS, ACM, 2017.
[4]
D. Eppstein, M. Löffler, D. Strash, Listing all maximal cliques in large sparse real-world graphs, ACM J. Exp. Algorithmics 18 (2013).
[5]
A. Grigoriev, H.L. Bodlaender, Algorithms for graphs embeddable with few crossings per edge, Algorithmica 49 (1) (2007) 1–11.
[6]
M. Grohe, Local tree-width, excluded minors, and approximation algorithms, Combinatorica 23 (4) (2003) 613–632.
[7]
W. Didimo, P. Eades, G. Liotta, Drawing graphs with right angle crossings, Theor. Comput. Sci. 412 (39) (2011) 5156–5166.
[8]
W. Huang, P. Eades, S. Hong, Larger crossing angles make graphs easier to read, J. Vis. Lang. Comput. 25 (4) (2014) 452–465.
[9]
M.A. Bekos, M. Kaufmann, F. Montecchiani, Guest editors' foreword and overview, Special Issue on Graph Drawing Beyond Planarity, J. Graph Algorithms Appl. 22 (1) (2018) 1–10.
[10]
W. Didimo, G. Liotta, F. Montecchiani, A survey on graph drawing beyond planarity, ACM Comput. Surv. 52 (1) (2019).
[11]
S. Hong, M. Kaufmann, S.G. Kobourov, J. Pach, Beyond-planar graphs: algorithmics and combinatorics, Dagstuhl Seminar 16452, Dagstuhl Rep. 6 (11) (2016) 35–62.
[12]
S. Hong, T. Tokuyama (Eds.), Beyond Planar Graphs, Communications of NII Shonan Meetings, Springer, 2020.
[13]
S.G. Kobourov, G. Liotta, F. Montecchiani, An annotated bibliography on 1-planarity, Comput. Sci. Rev. 25 (2017) 49–67.
[14]
S. Hong, Algorithms for 1-planar graphs, in: Beyond Planar Graphs, Springer, 2020, pp. 69–87.
[15]
J. Pach, G. Tóth, Graphs drawn with few crossings per edge, Combinatorica 17 (3) (1997) 427–439.
[16]
Alam, M.J.; Brandenburg, F.J.; Kobourov, S.G. (2015): On the book thickness of 1-planar graphs. CoRR arXiv:1510.05891.
[17]
M.A. Bekos, T. Bruckdorfer, M. Kaufmann, C.N. Raftopoulou, The book thickness of 1-planar graphs is constant, Algorithmica 79 (2) (2017) 444–465.
[18]
V. Dujmovic, G. Joret, P. Micek, P. Morin, T. Ueckerdt, D.R. Wood, Planar graphs have bounded queue-number, J. ACM 67 (4) (2020).
[19]
V.P. Korzhik, B. Mohar, Minimal obstructions for 1-immersions and hardness of 1-planarity testing, J. Graph Theory 72 (1) (2013) 30–71.
[20]
M.J. Bannister, S. Cabello, D. Eppstein, Parameterized complexity of 1-planarity, J. Graph Algorithms Appl. 22 (1) (2018) 23–49.
[21]
S. Cabello, B. Mohar, Adding one edge to planar graphs makes crossing number and 1-planarity hard, SIAM J. Comput. 42 (5) (2013) 1803–1829.
[22]
C. Auer, F.J. Brandenburg, A. Gleißner, J. Reislhuber, 1-planarity of graphs with a rotation system, J. Graph Algorithms Appl. 19 (1) (2015) 67–86.
[23]
F.J. Brandenburg, Recognizing optimal 1-planar graphs in linear time, Algorithmica 80 (1) (2018) 1–28.
[24]
P. Eades, S. Hong, N. Katoh, G. Liotta, P. Schweitzer, Y. Suzuki, A linear time algorithm for testing maximal 1-planarity of graphs with a rotation system, Theor. Comput. Sci. 513 (2013) 65–76.
[25]
C. Auer, C. Bachmaier, F.J. Brandenburg, A. Gleißner, K. Hanauer, D. Neuwirth, J. Reislhuber, Outer 1-planar graphs, Algorithmica 74 (4) (2016) 1293–1320.
[26]
S. Hong, P. Eades, N. Katoh, G. Liotta, P. Schweitzer, Y. Suzuki, A linear-time algorithm for testing outer-1-planarity, Algorithmica 72 (4) (2015) 1033–1054.
[27]
F.J. Brandenburg, Characterizing and recognizing 4-map graphs, Algorithmica 81 (5) (2019) 1818–1843.
[28]
M.J. Alam, F.J. Brandenburg, S.G. Kobourov, Straight-line grid drawings of 3-connected 1-planar graphs, in: Graph Drawing, in: LNCS, vol. 8242, Springer, 2013, pp. 83–94.
[29]
M.A. Bekos, W. Didimo, G. Liotta, S. Mehrabi, F. Montecchiani, On RAC drawings of 1-planar graphs, Theor. Comput. Sci. 689 (2017) 48–57.
[30]
T.C. Biedl, G. Liotta, F. Montecchiani, Embedding-preserving rectangle visibility representations of nonplanar graphs, Discrete Comput. Geom. 60 (2) (2018) 345–380.
[31]
E. Di Giacomo, W. Didimo, W.S. Evans, G. Liotta, H. Meijer, F. Montecchiani, S.K. Wismath, Ortho-polygon visibility representations of embedded graphs, Algorithmica 80 (8) (2018) 2345–2383.
[32]
S. Hong, P. Eades, G. Liotta, S. Poon, Fáry's theorem for 1-planar graphs, in: COCOON, in: LNCS, vol. 7434, Springer, 2012, pp. 335–346.
[33]
S. Hong, H. Nagamochi, Re-embedding a 1-plane graph into a straight-line drawing in linear time, in: Graph Drawing, in: LNCS, vol. 9801, Springer, 2016, pp. 321–334.
[34]
G. Liotta, F. Montecchiani, A. Tappini, Ortho-polygon visibility representations of 3-connected 1-plane graphs, Theor. Comput. Sci. 863 (2021) 40–52.
[36]
G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, F. Vargiu, An experimental comparison of four graph drawing algorithms, Comput. Geom. 7 (1997) 303–325.
[37]
M. Chimani, P. Kindermann, F. Montecchiani, P. Valtr, Crossing numbers of beyond-planar graphs, Theor. Comput. Sci. 898 (2022) 44–49.
[38]
C. Gutwenger, P. Mutzel, An experimental study of crossing minimization heuristics, in: G. Liotta (Ed.), GD 2003, in: LNCS, vol. 2912, Springer, 2003, pp. 13–24.
[40]
F.J. Brandenburg, 1-visibility representations of 1-planar graphs, J. Graph Algorithms Appl. 18 (3) (2014) 421–438.
[41]
M. Chimani, P. Hlinený, Inserting multiple edges into a planar graph, in: SoCG 2016, in: LIPIcs, vol. 51, Schloss Dagstuhl, 2016.
[42]
M. Chimani, C. Gutwenger, M. Jünger, G.W. Klau, K. Klein, P. Mutzel, The open graph drawing framework (OGDF), in: Handbook of Graph Drawing and Visualization, Chapman and Hall/CRC, 2013, pp. 543–569.
[43]
C. Gutwenger, P. Mutzel, R. Weiskircher, Inserting an edge into a planar graph, Algorithmica 41 (4) (2005) 289–308.
[44]
M. Chimani, C. Gutwenger, Advances in the planarization method: effective multiple edge insertions, J. Graph Algorithms Appl. 16 (3) (2012) 729–757.
[45]
R. Jayakumar, K. Thulasiraman, M.N.S. Swamy, O( n 2 ) algorithms for graph planarization, IEEE Trans. CAD Integr. Circuits Syst. 8 (3) (1989) 257–267.
[46]
M. Chimani, P. Mutzel, I.M. Bomze, A new approach to exact crossing minimization, in: ESA, in: LNCS, vol. 5193, Springer, 2008, pp. 284–296.
[47]
M.A. Bekos, S. Cornelsen, L. Grilli, S. Hong, M. Kaufmann, On the recognition of fan-planar and maximal outer-fan-planar graphs, Algorithmica 79 (2) (2017) 401–427.
[48]
C. Binucci, E. Di Giacomo, W. Didimo, F. Montecchiani, M. Patrignani, A. Symvonis, I.G. Tollis, Fan-planarity: properties and complexity, Theor. Comput. Sci. 589 (2015) 76–86.

Index Terms

  1. 1-planarity testing and embedding: An experimental study
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Computational Geometry: Theory and Applications
        Computational Geometry: Theory and Applications  Volume 108, Issue C
        Jan 2023
        156 pages

        Publisher

        Elsevier Science Publishers B. V.

        Netherlands

        Publication History

        Published: 01 January 2023

        Author Tags

        1. 1-planar graphs
        2. Experiments
        3. Backtracking algorithms

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 14 Nov 2024

        Other Metrics

        Citations

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media