Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Multivariate topology simplification

Published: 01 October 2016 Publication History

Abstract

Topological simplification of scalar and vector fields is well-established as an effective method for analysing and visualising complex data sets. For multivariate (alternatively, multi-field) data, topological analysis requires simultaneous advances both mathematically and computationally. We propose a robust multivariate topology simplification method based on "lip"-pruning from the Reeb space. Mathematically, we show that the projection of the Jacobi set of multivariate data into the Reeb space produces a Jacobi structure that separates the Reeb space into simple components. We also show that the dual graph of these components gives rise to a Reeb skeleton that has properties similar to the scalar contour tree and Reeb graph, for topologically simple domains. We then introduce a range measure to give a scaling-invariant total ordering of the components or features that can be used for simplification. Computationally, we show how to compute Jacobi structure, Reeb skeleton, range and geometric measures in the Joint Contour Net (an approximation of the Reeb space) and that these can be used for visualisation similar to the contour tree or Reeb graph.

References

[1]
Y.-J. Chiang, X. Lu, Progressive simplification of tetrahedral meshes preserving all isosurface topologies, Comput. Graph. Forum, 22 (2003) 493-504.
[2]
H. Carr, J. Snoeyink, M. van de Panne, Simplifying flexible isosurfaces using local geometric measures, IEEE Vis. (2004) 497-504.
[3]
J. Tierny, V. Pascucci, Generalized topological simplification of scalar fields on surfaces, IEEE Trans. Vis. Comput. Graph., 18 (2012) 2005-2013.
[4]
O. Saeki, Topology of Singular Fibers of Differentiable Maps, Springer, 2004.
[5]
H. Edelsbrunner, J. Harer, A.K. Patel, Reeb spaces of piecewise linear mappings, in: SoCG, 2008, pp. 242-250.
[6]
H. Carr, D. Duke, Joint contour net, IEEE Trans. Vis. Comput. Graph., 20 (2014) 1100-1113.
[7]
Z. Wood, H. Hoppe, M. Desbrun, P. Schröder, Removing excess topology from isosurfaces, ACM Trans. Graph., 23 (2004) 190-208.
[8]
A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, B. Hamann, A topological approach to simplification of three-dimensional scalar functions, IEEE Trans. Vis. Comput. Graph., 12 (2006) 474-484.
[9]
C. Luo, I. Safa, Y. Wang, Approximating gradients for meshes and point cloud via diffusion metric, in: Proceedings Symposium on Geometry Processing, Eurographics Association, Aire-La-Ville, Switzerland, 2009, pp. 1497-1508.
[10]
H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, Discrete Comput. Geom., 28 (2002) 511-533.
[11]
D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams, Discrete Comput. Geom., 37 (2007) 103-120.
[12]
B.D. Fabio, C. Landi, The edit distance for Reeb graphs of surfaces, Discrete Comput. Geom., 55 (2016) 423-461.
[13]
V. de Silva, E. Munch, A. Patel, Categorified Reeb graphs. arXiv:1501.04147 cs.CG
[14]
U. Bauer, E. Munch, Y. Wang, Strong equivalence of the interleaving and functional distortion metrics for Reeb graphs. arXiv:1412.6646 math.AT
[15]
I. Guskov, Z.J. Wood, Topological Noise Removal, 2001.
[16]
F.S. Nooruddin, G. Turk, Simplification and repair of polygonal models using volumetric techniques, IEEE Trans. Vis. Comput. Graph., 9 (2003) 191-205.
[17]
X. Ni, M. Garland, J.C. Hart, Fair Morse functions for extracting the topological structure of a surface mesh, ACM Trans. Graph. (TOG) - Proc. ACM SIGGRAPH, 23 (2004) 613-622.
[18]
H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Mesh optimization, in: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, 1993, pp. 19-26.
[19]
H. Hoppe, Progressive meshes, in: ACM SIGGRAPH 1996 Proceedings, ACM, New York, NY, USA, 1996, pp. 99-108.
[20]
J. Popović, H. Hoppe, Progressive simplicial complexes, in: ACM SIGGRAPH 1997 Proceedings, ACM, New York, NY, USA, 1997, pp. 217-224.
[21]
T.K. Dey, H. Edelsbrunner, S. Guha, D.V. Nekhayev, Topology preserving edge contraction, Publ. Inst. Math. (Belgr.), 66 (1998) 23-45.
[22]
P. Lindstrom, G. Turk, Fast and memory efficient polygonal simplification, in: IEEE Visualization, 1998, pp. 279-286.
[23]
P. Lindstrom, G. Turk, Evaluation of memoryless simplification, IEEE Trans. Vis. Comput. Graph., 5 (1999) 98-115.
[24]
M. Garland, P.S. Heckbert, Surface simplification using quadric error metrics, in: SIGGRAPH, 1997, pp. 209-216.
[25]
X. Tricoche, G. Scheuermann, H. Hagen, Continuous topology simplification of planar vector fields, in: Proceedings of the Conference on Visualization '01, IEEE Computer Society, Washington, DC, USA, 2001, pp. 159-166.
[26]
E. Zhang, K. Mischaikow, G. Turk, Vector field design on surfaces, ACM Trans. Graph., 25 (2006) 1294-1326.
[27]
J. Reininghaus, I. Hotz, Combinatorial 2D vector field topology extraction and simplification, Topol. Methods Data Anal. Vis. (2011) 103-114.
[28]
K. Polthier, E. Preuß, Identifying vector field singularities using a discrete Hodge decomposition, in: Mathematical Visualization, Springer-Verlag, New York, 2003, pp. 113-134.
[29]
Y. Tong, S. Lombeyda, A.N. Hirani, M. Desbrun, Discrete multiscale vector field decomposition, ACM Trans. Graphics (TOG), 22 (2003) 445-452.
[30]
H. Edelsbrunner, J. Harer, V. Natarajan, V. Pascucci, Local and global comparison of continuous functions, in: Proceedings of the Conference on Visualization, 2004, pp. 275-280.
[31]
G. Carlsson, A. Zomorodian, The theory of multidimensional persistence, in: 23rd Annual Symposium on Computational Geometry, vol. 42(1), 2009, pp. 71-93.
[32]
G. Singh, F. Mémoli, G. Carlsson, Topological methods for the analysis of high dimensional data sets and 3D object recognition, in: Eurographics Symposium on Point-Based Graphics, 2007, pp. 1-11.
[33]
D.F. Snyder, Topological persistence in Jacobi sets, 2004.
[34]
P.-T. Bremer, E.M. Bringa, M. Duchaineau, D. Laney, A. Mascarenhas, V. Pascucci, Topological feature extraction and tracking, J. Phys.: Conf. Ser., 78 (2007).
[35]
N. Suthambhara, V. Natarajan, Simplification of Jacobi sets, in: TopoInVis, 2009, pp. 91-102.
[36]
L. Huettenberger, C. Heine, H. Carr, G. Scheuermann, C. Garth, Towards multifield scalar topology based on pareto optimality, Comput. Graph. Forum, 32 (2013) 341-350.
[37]
L. Huettenberger, C. Heine, C. Garth, Decomposition and simplification of multivariate data using pareto sets, IEEE Trans. Vis. Comput. Graph., 20 (2014) 2684-2693.
[38]
H. Bhatia, B. Wang, G. Norgard, V. Pascucci, P.-T. Bremer, Local, smooth, and consistent Jacobi set simplification, Comput. Geom.: Theor. Appl., 48 (2015) 311-332.
[39]
A. Chattopadhyay, H. Carr, D. Duke, Z. Geng, Extracting Jacobi structures in Reeb spaces, in: EuroVis - Short Papers, The Eurographics Association, 2014, pp. 1-4.
[40]
B. Strodthoff, B. Jüttler, Layered Reeb graphs for three-dimensional manifolds in boundary representation, Comput. Graph., 46 (2014).
[41]
M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, D. Schikore, Contour trees and small seed sets for isosurface traversal, in: Symposium on Computational Geometry, 1997, pp. 212-220.
[42]
H. Carr, J. Snoeyink, U. Axen, Computing contour trees in all dimensions, Comput. Geom.: Theor. Appl., 24 (2003) 75-94.
[43]
M. Hilaga, Y. Shinagawa, T. Kohmura, T.L. Kunii, Topology matching for fully automatic similarity estimation of 3D shapes, in: SIGGRAPH, 2001, pp. 203-212.
[44]
H. Edelsbrunner, J. Harer, A. Mascarenhas, V. Pascucci, Time-varying Reeb graphs for continuous space-time data, in: Symposium on Computational Geometry, 2004, pp. 366-372.
[45]
V. Pascucci, P.-T. Bremer, A. Mascarenhas, G. Scorzelli, Robust on-line computation of Reeb graphs, ACM Trans. Graph. (TOG, 26 (2007).
[46]
O. Saeki, S. Takahashi, D. Sakurai, H.-Y. Wu, K. Kikuchi, H. Carr, D. Duke, T. Yamamoto, Visualizing multivariate data using singularity theory, in: Proceedings of Forum "Math-for-Industry" 2013, Mathematics for Industry, vol. 1, Springer, Japan, 2014, pp. 51-65.
[47]
H. Levine, Classifying Immersions into R 4 over Stable Maps of 3-manifolds into R 2, Springer-Verlag, Berlin, 1985.
[48]
O. Saeki, T. Yamamoto, Singular fibers of stable maps of 3-manifolds with boundary into surfaces and their applications. arXiv:1509.05848 math.GT
[49]
V. Guillemin, A. Pollack, Differential Topology, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974.
[50]
H. Edelsbrunner, J. Harer, Jacobi sets of multiple Morse functions, Foundations Comput. Math., 2002 (2004) 37-57.
[51]
A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
[52]
L. Kushner, H. Levine, P. Porto, Mapping three-manifolds into the plane I, Bol. Soc. Mat. Mexicana, 29 (1984) 11-33.
[53]
O. Saeki, T. Yamamoto, Cobordism group of Morse functions on surfaces with boundary, in: Proceedings of the XIII International Workshop on Real and Complex Singularities, 2014. http://imi.kyushu-u.ac.jp/~saeki/research.html#03
[54]
L. Mata-Lorenzo, Polyhedrons and pi-stable homotopies from 3-manifolds into the plane, Bol. Soc. Bras. Mat. (N.S.), 20 (1989) 61-85.
[55]
H. Carr, J. Snoeyink, M. van de Panne, Flexible isosurfaces: simplifying and displaying scalar topology using the contour tree, Comput. Geom.: Theor. Appl., 43 (2010) 42-58.
[56]
V. Pascucci, K. Cole-McLaughlin, G. Scorzell, Multi-resolution computation and presentation of contour trees, in: Proceedings of the IASTED Conference on Visualization, Imaging and Image Processing (VIIP 2004), 2004, pp. 452-290.
[57]
B. Duffy, H. Carr, T. Möller, Integrating isosurface statistics and histograms, IEEE Trans. Vis. Comput. Graph., 19 (2012) 263-277.
[58]
D. Duke, H. Carr, N. Schunck, H.A. Nam, A. Staszczak, Visualizing nuclear scission through a multifield extension of topological analysis, IEEE Trans. Vis. Comput. Graph., 18 (2012) 2033-2040.
[59]
Visualization Toolkit, . http://www.vtk.org/
[60]
M. Chimani, C. Gutwenger, M. Jünger, G.W. Klau, K. Klein, P. Mutzel, OGDF - Open Graph Drawing Framework. http://www.ogdf.net/
[61]
R.E. Tarjan, Efficiency of a good but not linear set union algorithm, J. ACM, 22 (1975) 215-225.
[62]
L. Ribes, P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Springer-Verlag, Berlin, 2010.

Cited By

View all
  • (2022)Topological Shape Matching using Multi-Dimensional Reeb GraphsProceedings of the Thirteenth Indian Conference on Computer Vision, Graphics and Image Processing10.1145/3571600.3571606(1-10)Online publication date: 8-Dec-2022
  • (2022)A Topological Similarity Measure Between Multi-Resolution Reeb SpacesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.308727328:12(4360-4374)Online publication date: 1-Dec-2022
  • (2019)Fast Mesh Simplification Method for Three-Dimensional Geometric Models with Feature-Preserving EfficiencyScientific Programming10.1155/2019/49261902019Online publication date: 3-Feb-2019
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computational Geometry: Theory and Applications
Computational Geometry: Theory and Applications  Volume 58, Issue C
October 2016
135 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 October 2016

Author Tags

  1. Multi-dimensional Reeb graph
  2. Multivariate topology
  3. Reeb skeleton
  4. Reeb space
  5. Simplification

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Topological Shape Matching using Multi-Dimensional Reeb GraphsProceedings of the Thirteenth Indian Conference on Computer Vision, Graphics and Image Processing10.1145/3571600.3571606(1-10)Online publication date: 8-Dec-2022
  • (2022)A Topological Similarity Measure Between Multi-Resolution Reeb SpacesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.308727328:12(4360-4374)Online publication date: 1-Dec-2022
  • (2019)Fast Mesh Simplification Method for Three-Dimensional Geometric Models with Feature-Preserving EfficiencyScientific Programming10.1155/2019/49261902019Online publication date: 3-Feb-2019
  • (2018)Structure and Stability of the One-Dimensional MapperFoundations of Computational Mathematics10.1007/s10208-017-9370-z18:6(1333-1396)Online publication date: 1-Dec-2018
  • (2017)Visualizing High-Dimensional DataIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2016.264096023:3(1249-1268)Online publication date: 1-Mar-2017

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media