Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Efficient load balancing over asymmetric datacenter topologies

Published: 01 September 2018 Publication History

Abstract

Datacenter networks are often structured as multi-rooted trees to provide high bisection bandwidth at low cost. To utilize the available bisection bandwidth, an efficient load balancing algorithm is required. Under symmetric network conditions, packet spraying is known to perform well, as it enables fine-grained (packet-level) load balancing over equal cost paths. However, packet spraying performs poorly in asymmetric topologies. To make packet spraying effective under asymmetry while retaining its simplicity, we propose SAPS, “Symmetric Adaptive Packet Spraying”, a Software-Defined Networking (SDN) based scheme that uses packet spraying over symmetric virtual topologies. SAPS is based on the key insight that if we provide each flow with a symmetric view of the network fabric, then packet spraying can produce near-optimal performance. Through simulations and testbed experiments, we evaluate SAPS. Over a variety of application workloads and asymmetric network scenarios, including single and multiple link failures, results indicate that SAPS performs well, e.g., under single link failure, outperforming state-of-the-art load balancing schemes by up to 61% for average flow completion times.

References

[1]
D. Abts, B. Felderman, A guided tour of data-center networking, Commun. ACM 55 (6) (2012) 44–51,.
[2]
M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, M. Sridharan, Data center TCP (DCTCP), SIGCOMM’10, 2010,.
[3]
V. Liu, D. Halperin, A. Krishnamurthy, T. Anderson, F10: a fault-tolerant engineered network, NSDI’13, 2013.
[4]
C. Hopps, Analysis of an equal-cost multi-path algorithm, RFC 2992, IETF, November, 2000.
[5]
J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu, Y. Xiong, D. Maltz, Per-packet load-balanced, low-latency routing for clos-based data center networks, CoNEXT’13, 2013,.
[6]
A. Dixit, P. Prakash, Y.C. Hu, R.R. Kompella, On the impact of packet spraying in data center networks, INFOCOM ’13, 2013,.
[7]
K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, A. Akella, Presto: edge-based load balancing for fast datacenter networks, SIGCOMM’15, 2015,.
[8]
C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, M. Handley, Improving datacenter performance and robustness with multipath TCP, SIGCOMM’11, 2011,.
[9]
P. Gill, N. Jain, N. Nagappan, Understanding network failures in data centers: measurement, analysis, and implications, SIGCOMM’11, 2011,.
[10]
H. Zhang, J. Zhang, W. Bai, K. Chen, M. Chowdhury, Resilient datacenter load balancing in the wild, SIGCOMM17, 2017,.
[11]
M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, V.T. Lam, F. Matus, R. Pan, N. Yadav, G. Varghese, CONGA: distributed congestion-aware load balancing for datacenters, in: SIGCOMM’14,. 10.1145/2740070.2626316, 2014.
[12]
M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat, Hedera: dynamic flow scheduling for data center networks, NSDI’10, 2010.
[13]
A. Kabbani, B. Vamanan, J. Hasan, F. Duchene, FlowBender: flow-level adaptive routing for improved latency and throughput in datacenter networks, CoNEXT’14, 2014,.
[14]
S. Sen, D. Shue, S. Ihm, M.J. Freedman, Scalable, optimal flow routing in datacenters via local link balancing, CoNEXT’13, 2013,.
[15]
S. Kandula, D. Katabi, S. Sinha, A. Berger, Dynamic load balancing without packet reordering, SIGCOMM Comput. Commun. Rev. 37 (2) (2007) 51–62,.
[16]
S. Ghorbani, Z. Yang, P.B. Godfrey, Y. Ganjali, A. Firoozshahian, DRILL: micro load balancing for low-latency data center networks, in: SIGCOMM 17,. 10.1145/3098822.3098839, 2017.
[17]
N. Katta, M. Hira, C. Kim, A. Sivaraman, J. Rexford, HULA: scalable load balancing using programmable data planes, in: SOSR’16,. 10.1145/2890955.2890968, 2016.
[18]
E. Vanini, R. Pan, M. Alizadeh, P. Taheri, T. Edsall, Let it flow: resilient asymmetric load balancing with flowlet switching, NSDI’17, 2017.
[19]
N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, J. Rexford, Clove: congestion-aware load balancing at the virtual edge, CoNEXT’17, 2017,.
[20]
Y. Zhang, N. Ansari, On architecture design, congestion notification TCP incast and power consumption in data centers, IEEE Commun. Surv. Tutorials 15 (1) (2013) 39–64,.
[21]
M. Mitzenmacher, The power of two choices in randomized load balancing, IEEE Trans. Parallel Distrib. Syst. 12 (10) (2001) 1094–1104,.
[22]
J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, A. Vahdat, WCMP: weighted cost multipathing for improved fairness in data centers, Eurosys’14, 2014,.
[23]
N. Shelly, B. Tschaen, K.T. Förster, M. Chang, T. Benson, L. Vanbever, Destroying networks for fun (and profit), Hotnets-XIV, 2015,.
[24]
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J. Turner, Openflow: enabling innovation in campus networks, SIGCOMM CCR, 2008,.
[25]
M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network architecture, SIGCOMM’08, 2008,.
[26]
W. Bai, L. Chen, K. Chen, D. Han, C. Tian, H. Wang, Information-agnostic flow scheduling for commodity data centers, NSDI’15, 2015.
[27]
[28]
A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz, P. Patel, S. Sengupta, VL2: ascalable and flexible data center network, SIGCOMM ’09, 2009,.
[29]
A. Munir, G. Baig, S.M. Irteza, I.A. Qazi, A.X. Liu, F.R. Dogar, PASE: synthesizing existing transport strategies for near-optimal data center transport, IEEE/ACM Trans. Netw. 25 (1) (2017) 320–334,.
[30]
D. Zats, T. Das, P. Mohan, D. Borthakur, R. Katz, Detail: reducing the flow completion time tail in datacenter networks, SIGCOMM’12, 2012,.
[33]
M. Dayarathna, Y. Wen, R. Fan, Data center energy consumption modeling: a survey, IEEE Commun. Surv. Tutorials 18 (1) (2016) 732–794,.
[34]
B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, N. McKeown, Elastictree: saving energy in data center networks, NSDI’10, 2010.
[35]
Y. Zhang, N. Ansari, HERO: hierarchical energy optimization for data center networks, IEEE Syst. J. 9 (2) (2015) 406–415,.
[36]
L. Zhang, T. Han, N. Ansari, Energy-aware virtual machine management in inter-datacenter networks over elastic optical infrastructure, IEEE Trans. Green Commun.Netw. 2 (1) (2018) 305–315,.

Index Terms

  1. Efficient load balancing over asymmetric datacenter topologies
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Computer Communications
          Computer Communications  Volume 127, Issue C
          Sep 2018
          187 pages

          Publisher

          Elsevier Science Publishers B. V.

          Netherlands

          Publication History

          Published: 01 September 2018

          Author Tags

          1. Datacenter
          2. Network layer
          3. Load balancing
          4. SDN
          5. Packet spraying
          6. Asymmetry
          7. Failures

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 14 Dec 2024

          Other Metrics

          Citations

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media