Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Multiple correspondence analysis in predictive logistic modelling: Application to a living-donor kidney transplantation data

Published: 01 August 2009 Publication History

Abstract

This work deals with the use of multiple correspondence analysis (MCA) and a weighted Euclidean distance (the tolerance distance) as an exploratory tool in developing predictive logistic models. The method was applied to a living-donor kidney transplant data set with 109 cases and 13 predictors. This approach, followed by backward and forward selection procedures, yielded two models, one with four and another with two predictors. These models were compared to two other models, ordinarily built by backward and forward stepwise selection, which yielded, respectively, five and two predictors. After internal validation, the models performance statistics showed similar results. Likelihood ratio tests suggested that backward approach achieved a better fit than the forward modelling in both methods and the Vuong's non-nested test between backward-built models suggested that these were undistinguishable. We conclude that the tolerance distance, in combination with MCA, could be a feasible method for variable selection in logistic modelling, when there are several categorical predictors.

References

[1]
Altman, D.G. and Royston, P., What do we mean by validating a prognostic model?. Stat. Med. v19. 453-473.
[2]
Hosmer, D.W., Hosmer, T., Le Cessie, S. and Lemeshow, S., A comparison of goodness-of-fit tests for the logistic regression model. Stat. Med. v16. 965-980.
[3]
Harrel, F.E., Lee, K.L. and Mark, D.B., Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. v15. 361-387.
[4]
S. Menard, Applied logistic regression analysis, In: M.S. Lewis-Beck (Ed.), SAGE University Papers Series on Quantitative Applications in the Social Sciences no. 07-106, second edition, Sage, Thousand Oaks, CA, USA, 2002.
[5]
Jolliffe, L.T., Principal component analysis. In: Bickel, P., Diggle, P., Fienberg, S., Krickeberg, K., Olkin, I., Wermuth, N., Zeger, S. (Eds.), Springer Series in Statistics, Springer Science-Business Media, New York, NY, USA.
[6]
Greenacre, M., Correspondence analysis in medical research. Stat. Methods Med. Res. v1. 97-117.
[7]
Costa, J.C.G.D., Almeida, R.M.V.R., Infantosi, A.F.C. and Suassuna, J.H.R., A heuristic index for selecting similar categories in multiple correspondence analysis applied to living-donor kidney transplantation. Comput. Methods Programs Biomed. v90. 217-229.
[8]
Ljung, L., System identification-theory for the user. In: Kailath, T. (Ed.), Prentice Hall Information and System Sciences Series, Prentice Hall PTR, Upper Saddle River, NJ, USA.
[9]
Collet, D., Modelling Binary Data, Chapman and Hall. 1994. Chapman and Hall, London, UK.
[10]
Akaike, H., A new look at the statistical model identification. IEEE Trans. Autom. Control. vAC-19. 716-723.
[11]
Steyerberg, E.W., Eijkemans, M.J.C., Harrel-JR, F.E. and Habbema, J.D.F., Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. Med. Decis. Making. v21. 45-56.
[12]
Efron, B., Bootstrap methods: another look at jackknife. Ann. Stat. v7. 1-26.
[13]
Drapper, N.R. and John, J.A., Influential observations and outliers in regression. Technometrics. v23. 21-23.
[14]
Lebart, L., Morineau, A. and Warwick, K.M., Multivariate descriptive statistical analysis-correspondence analysis and related techniques for large matrices. In: Barnett, V., Bradley, R.A., Hunter, J.S., Kendall, D.G., Miller, R.G., Stigler, S.M., Watson, G.S. (Eds.), Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics, John Willey and Sons, New York, USA.
[15]
Greenacre, M. and Hastie, T., The geometric interpretation of correspondence analysis. J. Am. Stat. Assoc. v82. 437-447.
[16]
Greenacre, M., Correspondence analysis in practice. In: Keiding, N., Morgan, B., Speed, T., van der Heijden, P. (Eds.), Interdisciplinary Statistics Series, Chapman and Hall/CRC, Boca Raton, FL, USA.
[17]
S.C. Weller, A.K. Romney, Metric scaling-correspondence analysis, In: M.S. Lewis-Beck (Ed.), SAGE University Papers Series on Quantitative Applications in the Social Sciences no. 07-75, Sage, Newbury Park, CA, USA, 1990.
[18]
Heiser, W.J., Geometric representation of association between categories. Psychometrika. v69. 513-545.
[19]
Heo, M. and Gabriel, K.R., The fit of graphical displays to patterns of expectations. Comput. Stat. Data Anal. v36. 47-67.
[20]
Gabriel, K.R., Goodness of fit of biplots and correspondence analysis. Biometrika. v89. 423-436.
[21]
de Leew, J. and Meulman, J., A special jackknife for multidimensional scaling. J. Classif. v3. 97-112.
[22]
Krzanowski, W.J., Sensitivity of metric scaling and analysis of distance. Biometrics. v62. 239-244.
[23]
Pack, P. and Jolliffe, I.T., Influence in correspondence analysis. Appl. Stat. v41. 365-380.
[24]
Lebart, L., Which bootstrap for principal axes methods?. In: Brito, P., Bertrand, P., Cucumel, G., De Carvalho, F. (Eds.), Selected Contributions in Data Analysis and Classification, Series: Studies in Classification, Data Analysis and Knowledge Organization, Springer, New York, NY. pp. 581-588.
[25]
Cattell, R.B., The scree test for the number of factors. Multivar. Behav. Res. v1. 245-276.
[26]
Ávila, C.A., Ruzany, F., Souza, E.R., Sampaio, J.C., Dorigo, D. and Suassuna, J.H., Long-term outcome of renal transplantation at a university center in Rio de Janeiro between 1975 and 2000. Transpl. Proc. v36. 865-867.
[27]
Takiff, H., Mickey, M.R. and Terasaki, P.I., Factors important in 10-year kidney transplant survival. In: Cecka, J.M., Terasaki, P.I. (Eds.), Clinical Transplants 1986, UCLA Tissue Typing Laboratory, Los Angeles. pp. 157-164.
[28]
Cecka, M., Clinical outcome of renal transplantation. Factors influencing patient and graft survival. Surg. Clin. North Am. v78. 133-148.
[29]
Gjertson, D.W., A multi-factor analysis of kidney graft outcomes at one or five years posttransplantation: 1996 UNOS update. In: Cecka, J.M., Terasaki, P.I. (Eds.), Clinical Transplants 1996, UCLA Tissue Typing Laboratory, Los Angeles. pp. 343-360.
[30]
Suzuki, R. and Shimodaira, H., Pvclust: an R package for assessing the uncertainty of hierarchical clustering. Bioinformatics. v22. 1540-1542.
[31]
Steyerberg, E.W., Bleeker, S.E., Moll, H.A., Grobbee, D.E. and Moons, K.G.M., Prognostic modelling with logistic regression analysis: in search of a sensible strategy in small data sets. Med. Decis. Making. v21. 45-56.
[32]
Vuong, Q.H., Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica. v57. 307-333.
[33]
Bleeker, S.E., Moll, H.A., Steyerberg, E.W., Donders, A.R.T., Derksen-Lubsen, G., Grobbee, D.E. and Moons, K.G.M., External validation is necessary in prediction research: a clinical example. J. Clin. Epidemiol. v56. 826-832.
[34]
R Development Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2004, ISBN 3-900051-07-0, URL http://www.R-project.org.
[35]
J. Fox, car: companion to applied regression, R Package Version 1.2-1, 2007, URL http://socserv.socsci.mcmaster.ca/jfox.
[36]
F.E. Harrel Jr, Design: design package, R Package Version 2.1-1, 2007, URL http://biostat.mc.vanderbilt.edu/rms.
[37]
W.N. Venables, B.D. Ripley, Modern Applied Statistics With S, fourth edition, Springer, New York, 2002, URL http://www.stats.ox.ac.uk/pub/MASS4.
[38]
S. Jackman, Pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory, Stanford University, 2008, URL http://pscl.stanford.edu.
[39]
D. Chessel, A.B. Dufour, S. Dray, with contributions from J.R. Lobry, S. Ollier, S. Pavoine and J. Thioulouse, ade4: analysis of environmental data: exploratory and Euclidean methods in environmental sciences, R Package, Version 1.4-1, 2005, URL http://pbil.univ-lyon1.fr/ade-4/adelist.html.
[40]
T. Sing, O. Sander, N. Beerenwinkel, T. Lengauer, ROCR: visualizing the performance of scoring classifiers, R Package Version 1.0-2, 2007, URL http://rocr.bioinf.mpi-sb.mpg.de.
[41]
Hariharan, S., Johnson, C.P., Bresnahan, B.A., Taranto, S.E., McIntosh, M.J. and Stablein, D., Improved graft survival after renal transplantation in the United States, 1988 to 1996. N. Engl. J. Med. v342. 605-612.
[42]
Krzanowski, W.J., Selection of variables to preserve multivariate data structure, using principal components. Appl. Stat. v36. 22-33.
[43]
Milan, L. and Whittaker, J., Application of parametric bootstrap to models that incorporate a singular value decomposition. Appl. Stat. v44. 31-49.
[44]
Leclerc, A., Luce, D., Lert, F., Chastang, J.F. and Logeay, P., Correspondence analysis and logistic modelling: complementary use in the analysis of a health survey among nurses. Stat. Med. v7. 983-995.
[45]
Ciampi, A., Thiffault, J., Nakache, J.P. and Asselain, B., Stratification by stepwise regression, correspondence analysis and recursive partition: a comparison of three methods of analysis for survival data with covariates. Comput. Stat. Data Anal. v4. 185-204.
[46]
van der Heijden, P.G.M., Falguerolles, A. and de Leeuw, J., A combined approach to contingency table analysis using correspondence analysis and log-linear analysis. Appl. Stat. v38. 249-292.
[47]
Ruzany, F., Moraes, J.R., de Queiroz Faria, L., de Moraes Souza, E.R. and Iwaki, Y., Unrelated donor-specific blood transfusions in human renal transplantation. Transplantation. v35. 101-102.
[48]
Higgins, R.M., Raymond, N.T., Krishnan, N.S., Veerasamy, M., Rahmati, M., Lam, F.T., Kashi, H. and West, N., Acute rejection after renal transplantation is reduced by approximately 50% by prior therapeutic blood transfusions, even in tacrolimus-treated patients. Transplantation. v77. 469-471.

Cited By

View all
  • (2022)COVID-19 and mental disorders in healthcare PersonnelJournal of Biomedical Informatics10.1016/j.jbi.2022.103993126:COnline publication date: 1-Feb-2022

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computer Methods and Programs in Biomedicine
Computer Methods and Programs in Biomedicine  Volume 95, Issue 2
August, 2009
175 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 01 August 2009

Author Tags

  1. 2D
  2. AUROC
  3. B1
  4. B2
  5. B3
  6. B4
  7. Blood transfusions*
  8. CN
  9. CY
  10. Correspondence analysis
  11. CyA
  12. D1
  13. D2
  14. D3
  15. D4
  16. DA
  17. DF
  18. DM
  19. DNA
  20. HD
  21. HH
  22. HI
  23. HLA
  24. HP
  25. Kidney transplantation
  26. LR
  27. LRT
  28. Logistic models
  29. MCA
  30. PD
  31. R1
  32. R2
  33. R3
  34. R4
  35. RA
  36. RF
  37. RM
  38. RN
  39. RNA
  40. ROC
  41. RY
  42. SO
  43. SU
  44. SVD
  45. Statistical modelling
  46. T1
  47. T2
  48. T3
  49. T4
  50. TN
  51. TY
  52. p.d.f.

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 17 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2022)COVID-19 and mental disorders in healthcare PersonnelJournal of Biomedical Informatics10.1016/j.jbi.2022.103993126:COnline publication date: 1-Feb-2022

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media