Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A derivatives trading recommendation system: : The mid‐curve calendar spread case

Published: 12 August 2019 Publication History

Summary

Derivative traders are usually required to scan through hundreds, even thousands of possible trades on a daily basis. Up to now, not a single solution is available to aid in their job. Hence, this work is aimed to develop a trading recommendation system, and to apply this system to the so‐called Mid‐Curve Calendar Spread (MCCS) trade. To suggest that such approach is feasible, we used a list of 35 different types of MCCSs; a total of 11 predictive and 4 benchmark models. Our results suggest that linear regression with l1‐regularisation (Lasso) compared favourably to other approaches from a predictive and interpretability point of views.

References

[1]
Acar, E., & Satchell, S. (2002). Advanced trading rules. Oxford, United Kingdom: Butterworth‐Heinemann.
[2]
Andersen, T. G., Bollerslev, T., Diebold, F. X., & Vega, C. (2007). Real‐time price discovery in global stock, bond and foreign exchange markets. Journal of International Economics, 73(2), 251–277. https://doi.org/10.1016/j.jinteco.2007.02.004
[3]
Baker, R. M., Coolen‐Maturi, T., & Coolen, F. P. A. (2017). Nonparametric predictive inference for stock returns. Journal of Applied Statistics, 44(8), 1333–1349. https://doi.org/10.1080/02664763.2016.1204429
[4]
Bischl, B., Mersmann, O., Trautmann, H., & Weihs, C. (2012). Resampling methods for meta‐model validation with recommendations for evolutionary computation. Evolutionary Computation, 20(2), 249–275.
[5]
Bishop, C (2007). Pattern recognition and machine learning. New York: Springer.
[6]
Brigo, D., & Mercurio, F. (2007). Interest rate models‐theory and practice: with smile, inflation and credit. Heidelberg, Germany: Springer Science & Business Media.
[7]
Campbell, J. Y., Lo, A. W.‐C., & MacKinlay, A. C. (1997). The econometrics of financial markets. New Jersey, United States: Princeton University press.
[8]
Chen, H., De, P., Hu, Y. J., & Hwang, B.‐H. (2014). Wisdom of crowds: The value of stock opinions transmitted through social media. Review of Financial Studies, 27(5), 1367. https://doi.org/10.1093/rfs/hhu001
[9]
Chen, Y.‐L., & Gau, Y.‐F. (2010). News announcements and price discovery in foreign exchange spot and futures markets. Journal of Banking & Finance, 34(7), 162–1636. https://doi.org/10.1016/j.jbankfin.2010.03.009
[10]
Choi, H., Mueller, P., & Vedolin, A. (2017). Bond variance risk premiums. Review of Finance, 21(3), 987–1022.
[11]
Chong, E., Han, C., & Park, F. C. (2017). Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Systems with Applications, 83, 187–205. https://doi.org/10.1016/j.eswa.2017.04.030
[12]
Corb, H. (2012). Interest rate swaps and other derivatives. New York, United States: Columbia University Press.
[13]
Deng, Y., Bao, F., Kong, Y., Ren, Z., & Dai, Q. (2017). Deep direct reinforcement learning for financial signal representation and trading. IEEE Transactions on Neural Networks and Learning Systems, 28(3), 653–664. https://doi.org/10.1109/TNNLS.2016.2522401
[14]
Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.
[15]
Duarte, J., Longstaff, F. A., & Yu, F. (2006). Risk and return in fixed‐income arbitrage: Nickels in front of a steamroller? Review of Financial Studies, 20(3), 769–811.
[16]
Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd edition): Wiley‐Interscience.
[17]
Duyvesteyn, J., & de Zwart, G. (2015). Riding the swaption curve. Journal of Banking & Finance, 59, 57–75. https://doi.org/10.1016/j.jbankfin.2015.05.012
[18]
Ehrman, D. S. (2006). The handbook of pairs trading: Strategies using equities, options, and futures, Vol. 240: John Wiley & Sons.
[19]
El Ouadghiri, I., Mignon, V., & Boitout, N. (2016). On the impact of macroeconomic news surprises on Treasury‐bond returns. Annals of Finance, 12(1), 29–53. https://doi.org/10.1007/s10436-015-0271-3
[20]
Elliott, G., Gargano, A., & Timmermann, A. (2013). Complete subset regressions. Journal of Econometrics, 177(2), 357–373. https://doi.org/10.1016/j.jeconom.2013.04.017
[21]
Feuerriegel, S., & Prendinger, H. (2016). News‐based trading strategies. Decision Support Systems, 90, 65–74. https://doi.org/10.1016/j.dss.2016.06.020
[22]
Firoozye, N., & Zhang, Q. (2014a). Turbo carry zooms ahead: A performance update of the turbo‐carry trades. Nomura International plc, Nomura Research.
[23]
Firoozye, N., & Zhang, Q. (2014b). Usd short‐term front‐end turbo carry usd 1m1y2y trades: Short horizon for sizeable carry. Nomura International plc, Nomura Research.
[24]
Firoozye, N., & Zheng, X. (2016). Market update: Forward vol and midcurve calendar spreads in usd and eur recent levels and carry and trades of note. Nomura International plc, Nomura Research.
[25]
Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning, Vol. 1. Berlin: Springer series in statistics Springer.
[26]
Galeshchuk, S., & Mukherjee, S. (2017). Deep networks for predicting direction of change in foreign exchange rates. Intelligent Systems in Accounting, Finance and Management, 24(4), 100–110.
[27]
Gencay, R., & Qi, M. (2001). Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging. IEEE Transactions on Neural Networks, 12(4), 726–734. https://doi.org/10.1109/72.935086
[28]
Gerlein, E. A., McGinnity, M., Belatreche, A., & Coleman, S. (2016). Evaluating machine learning classification for financial trading: An empirical approach. Expert Systems with Applications, 54, 193–207. https://doi.org/10.1016/j.eswa.2016.01.018
[29]
Glasserman, P. (2013). Monte carlo methods in financial engineering, Vol. 53. New York, United States: Springer Science & Business Media.
[30]
Han, G.‐S., & Lee, J. (2008). Prediction of pricing and hedging errors for equity linked warrants with gaussian process models. Expert Systems with Applications, 35(1‐2), 515–523. https://doi.org/10.1016/j.eswa.2007.07.041
[31]
Haykin, S. S. (2009). Neural networks and learning machines, Vol. 3. New Jersey, United States: Pearson.
[32]
Hyndman, R., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach. Heidelberg, Germany: Springer Science & Business Media.
[33]
Karathanasopoulos, A., Theofilatos, K. A., Sermpinis, G., Dunis, C., Mitra, S., & Stasinakis, C. (2016). Stock market prediction using evolutionary support vector machines: An application to the ase20 index. European Journal of Finance, 22(12), 1145–1163. https://doi.org/10.1080/1351847X.2015.1040167
[34]
Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient‐boosted trees, random forests: Statistical arbitrage on the s&p 500. European Journal of Operational Research, 259(2), 689–702. https://doi.org/10.1016/j.ejor.2016.10.031
[35]
Malkiel, B. G. (2003). The efficient market hypothesis and its critics. The Journal of Economic Perspectives, 17(1), 59–82.
[36]
Nakano, M., Takahashi, A., & Takahashi, S. (2017). Generalized exponential moving average (ema) model with particle filtering and anomaly detection. Expert Systems with Applications, 73, 187–200. https://doi.org/10.1016/j.eswa.2016.12.034
[37]
Natenberg, S. (2014). Option volatility and pricing: Advanced trading strategies and techniques. New York, United States: McGraw Hill Professional.
[38]
Park, H., Kim, N., & Lee, J. (2014). Parametric models and non‐parametric machine learning models for predicting option prices: Empirical comparison study over {KOSPI} 200 index options. Expert Systems with Applications, 41(11), 5227–5237. https://doi.org/10.1016/j.eswa.2014.01.032
[39]
Park, H., & Lee, J. (2012). Forecasting nonnegative option price distributions using bayesian kernel methods. Expert Systems with Applications, 39(18), 13243–13252. https://doi.org/10.1016/j.eswa.2012.05.077
[40]
Rebonato, R., McKay, K., & White, R. (2011). The sabr/libor market model: Pricing, calibration and hedging for complex interest‐rate derivatives. New Jersey, United States: John Wiley & Sons.
[41]
Resta, M. (2016). Varsom: A tool to monitor markets' stability based on value at risk and self‐organizing maps. Intelligent Systems in Accounting, Finance and Management, 23(1‐2), 47–64.
[42]
Reveiz‐Herault, A. (2016). An active asset management investment process for drawdown‐averse investors. Intelligent Systems in Accounting, Finance and Management, 23(1‐2), 85–96.
[43]
Shreve, S. E. (2004). Stochastic calculus for finance ii: Continuous‐time models, Vol. 11. New York, United States: Springer Science & Business Media.
[44]
Sousa, J. Beleza, Esquível, M. L., & Gaspar, R. M. (2012). Machine learning vasicek model calibration with gaussian processes. Communications in Statistics: Simulation and Computation, 41(6), 776–786. https://doi.org/10.1080/03610918.2012.625324
[45]
Taleb, N. (1997). Dynamic hedging: Managing vanilla and exotic options, Vol. 64. New Jersey, United States: John Wiley & Sons.
[46]
von Spreckelsen, C., von Mettenheim, H.‐J., & Breitner, M. H. (2014). Real‐time pricing and hedging of options on currency futures with artificial neural networks. Journal of Forecasting, 33(6), 419–432. https://doi.org/10.1002/for.2311
[47]
Weng, B., Ahmed, M. A., & Megahed, F. M. (2017). Stock market one‐day ahead movement prediction using disparate data sources. Expert Systems with Applications, 79, 153–163. https://doi.org/10.1016/j.eswa.2017.02.041
[48]
Whaley, R. E. (2009). Understanding the vix. Journal of Portfolio Management, 35(3), 98–105.
[49]
Zhou, T., Gao, S., Wang, J., Chu, C., Todo, Y., & Tang, Z. (2016). Financial time series prediction using a dendritic neuron model. Knowledge‐Based Systems, 105, 214–224. https://doi.org/10.1016/j.knosys.2016.05.031
[50]
Zhou, X., Nakajima, J., & West, M. (2014). Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models. International Journal of Forecasting, 30(4), 963–980.

Index Terms

  1. A derivatives trading recommendation system: The mid‐curve calendar spread case
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image International Journal of Intelligent Systems in Accounting and Finance Management
            International Journal of Intelligent Systems in Accounting and Finance Management  Volume 26, Issue 2
            April/June 2019
            48 pages
            ISSN:1055-615X
            EISSN:2160-0074
            DOI:10.1002/isaf.v26.2
            Issue’s Table of Contents

            Publisher

            John Wiley and Sons Ltd.

            United Kingdom

            Publication History

            Published: 12 August 2019

            Author Tags

            1. derivatives
            2. machine learning
            3. trading recommendation system

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 14 Dec 2024

            Other Metrics

            Citations

            View Options

            View options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media