Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Semantic data mining in the information age: : A systematic review

Published: 30 June 2021 Publication History

Abstract

Data mining is the discovery of meaningful information or unrevealed patterns in data. Traditional data‐mining approaches, using statistical calculations, machine learning, artificial intelligence, and database technology, cannot interpret data on a conceptual or semantic level and fail to reveal the meanings within the data. This results in a user not being analyzed and determines its signification and implications. Several semantic data‐mining approaches have been proposed in the past decade that overcome these limitations by using a domain ontology as background knowledge to enable and enhance data‐mining performance. The main contributions of this literature survey include organizing the surveyed articles in a new way that provides ease of understanding for interested researchers, and the provision of a critical analysis and summary of the surveyed articles, identifying the contribution of these papers to the field, and the limitations of the analysis methods and approaches discussed in this corpus, with the intention of informing researchers in this growing field in their innovative approaches to new research. Finally, we identify the future trends and challenges in this study track that will be of concern to future researchers, such as dynamic knowledge‐based methods or big‐data tool collaboration. This survey article provides a comprehensive overview of the literature on domain ontologies as used in the various semantic data‐mining tasks, such as preprocessing, modeling, and postprocessing. We investigated the role of semantic data mining in the field of data science and the processes and methods of applying semantic data mining to a data resource description framework.

References

[1]
Hand DJ. Principles of data mining. Drug Saf. 2007;30(7):621‐622.
[2]
Vavpetič A, Lavrač N. Using ontologies in semantic data mining with g‐SEGS and Aleph. In: Muggleton H, Watanabe H, eds. Latest Advances in Inductive Logic Programming. London, UK: Imperial College Press; 2014:19‐26.
[3]
Anand SS, Bell DA, Hughes JG. The role of domain knowledge in data mining. In: Proceedings of the 4th International Conference on Information and Knowledge Management. Baltimore, MD, USA; 1995:37‐43.
[4]
Sinha AP, Zhao H. Incorporating domain knowledge into data mining classifiers: an application in indirect lending. Decis Support Syst. 2008;46(1):287‐299.
[5]
Brisson L, Collard M. An ontology driven data mining process. In: Proceedings of the 10th International Conference on Enterprise Information Systems. Barcelona, Spain; 2008:54‐61.
[6]
Asadifar S, Kahani M. Semantic association rule mining: a new approach for stock market prediction. In: Proceedings of the 2nd Conference on Swarm Intelligence and Evolutionary Computation. Kerman, Iran; 2017:106‐111.
[7]
Bellandi A, Furletti B, Grossi V, Romei A. Ontology‐driven association rule extraction: a case study. In: Paolo B, Euzenat J, Ghidini C, McGuinness DL, Serafini L, Shvaiko P, Wache H, eds. Proceedings of the International Workshop on Contexts and Ontologies: Representation and Reasoning. Roskilde, Denmark: CEUR-WS.org; 2007:10‐19.
[8]
Bytyçi E, Ahmedi L, Lisi FA. Enrichment of association rules through exploitation of ontology properties—healthcare case study. Procedia Comput Sci. 2017;113:360‐367.
[9]
Kopanas I, Avouris NM, Daskalaki S. The role of domain knowledge in a large scale data mining project. In: Proceedings of the 2nd Hellenic Conference on Artificial Intelligence. Thessaloniki, Greece; 2002:288‐299.
[10]
Batet M, Valls A, Gibert K. Improving classical clustering with ontologies. In: Proceedings of the 4th World Conference of the IASC. Yokohama, Japan; 2008:137‐146.
[11]
Effati M, Sadeghi‐Niaraki A. A semantic‐based classification and regression tree approach for modelling complex spatial rules in motor vehicle crashes domain. Wiley Interdiscip Rev Data Min Knowl Discov. 2015;5(4):181‐194.
[12]
Trappey AJC, Trappey CV, Hsu F, Hsiao DW. A fuzzy ontological knowledge document clustering methodology. IEEE Trans Syst Man Cybern Part B Cybern. 2009;39(3):806‐814.
[13]
Dou D, Wang H, Liu H. Semantic data mining: a survey of ontology‐based approaches. In: Proceedings of the 9th International Conference on Semantic Computing. Anaheim, CA, USA; 2015:244‐251.
[14]
Cao L. Data science: challenges and directions. Commun ACM. 2017;60(8):59‐68.
[15]
Kaufman KA, Michalski RS. From data mining to knowledge mining. In: Rao CR, Wegman EJ, Solka JL, eds. Handbook of Statistics. Data Mining and Data Visualization. Vol 24. Netherlands: Elsevier; 2005:47‐75.
[16]
Staab S, Studer R. Handbook on Ontologies. 2nd ed. Heidelberg: Springer Science & Business Media; 2009.
[17]
Horridge M. A practical guide to building owl ontologies using protege 4 and co‐ode tools edition 1.3. 2011. http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf. Accessed December 15, 2019.
[18]
Chanmee S, Kesorn K. Data quality enhancement for decision tree algorithm using knowledge‐based model. Curr Appl Sci Technol. 2020;20(2):259‐277.
[19]
Wirth R. CRISP‐DM: towards a standard process model for data mining. In: Proceedings of the 4th International Conference on the Practical Application of Knowledge Discovery and Data Mining. Manchester, UK; 2000:29‐39.
[20]
Wongthongtham P, Salih BA. Ontology‐based approach for identifying the credibility domain in social big data. J Organ Comput Electron Commer. 2018;28(4):354‐377.
[21]
Kralj J, Robnik‐Sikonja M, Lavrac N. NetSDM: semantic data mining with network analysis. J Mach Learn Res. 2019;20(32):1‐50.
[22]
Page L, Brin S, Motwani R, Winograd T. The PageRank Citation Ranking: Bringing Order to the Web. CA, USA: Stanford InfoLab, Stanford University; 1998.
[23]
Grover A, Leskovec J. Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. CA, USA; 2016:855‐864.
[24]
Gorunescu F. Data Mining: Concepts, Models and Techniques. Vol 12. Heidelberg: Springer Science & Business Media; 2011.
[25]
Wang X, Hamilton HJ, Bither Y. An Ontology‐based Approach to Data Cleaning. Regina, Canada: Department of Computer Science, University of Regina; 2005.
[26]
Perez‐Rey D, Anguita A, Crespo J. OntoDataClean: ontology‐based integration and preprocessing of distributed data. In: Proceedings of the 7th International Conference on Biological and Medical Data Analysis. Thessaloniki, Greece; 2006:262‐272.
[27]
Kedad Z, Métais E. Ontology‐based data cleaning. In: Proceedings of the 6th International Conference on Applications of Natural Language to Information Systems‐Revised Papers. Berlin, Heidelberg, Germany; 2002:137‐149.
[28]
Milano D, Scannapieco M, Catarci T. Using ontologies for XML data cleaning. In: Meersman R, Tari Z, Herrero P, eds. On the Move to Meaningful Internet Systems 2005. Berlin, Heidelberg: Springer; 2005:562‐571.
[29]
Fürber C, Hepp M. Using SPARQL and SPIN for data quality management on the semantic web. In: Abramowicz W, Tolksdorf R, eds. Business Information Systems. Lecture Notes in Business Information Processing. Berlin, Heidelberg: Springer; 2010:35‐46.
[30]
Fürber C, Hepp M. Using semantic web resources for data quality management. In: Cimiano P, Pinto HS, eds. Knowledge Engineering and Management by the Masses. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 2010:211‐225.
[31]
Moss L, Corsar D, Piper I. A linked data approach to assessing medical data. In: Proceedings of the 25th IEEE International Symposium on Computer‐Based Medical Systems. Rome, Italy; 2012:1‐4.
[32]
Wang Y, Yang S. Outlier detection from massive short documents using domain ontology. In: Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems. Xiamen, China; 2010:558‐562.
[33]
Ristoski P, Paulheim H. Semantic web in data mining and knowledge discovery: a comprehensive survey. J Web Semant. 2016;36:1‐22.
[34]
Zhou Z‐H. A brief introduction to weakly supervised learning. Natl Sci Rev. 2018;5(1):44‐53.
[35]
Salguero AG, Espinilla M. Ontology‐based feature generation to improve accuracy of activity recognition in smart environments. Comput Electr Eng. 2018;68:1‐13.
[36]
Salguero AG, Medina J, Delatorre P, Espinilla M. Methodology for improving classification accuracy using ontologies: application in the recognition of activities of daily living. J Ambient Intell Humaniz Comput. 2019;10(6):2125‐2142.
[37]
Oliva JT, Lee HD, Spolaôr N, et al. A computational system based on ontologies to automate the mapping process of medical reports into structured databases. Expert Syst Appl. 2019;115:37‐56.
[38]
Bedrick EJ. Biserial correlation. In: Encyclopedia of Biostatistics. Vol 1. Chichester, England: John Wiley & Sons; 2005:1‐3.
[39]
McHugh ML. The chi‐square test of independence. Biochem Med. 2013;23(2):143‐149.
[40]
Papachristoudis G, Diplaris S, Mitkas PA. SoFoCles: feature filtering for microarray classification based on gene ontology. J Biomed Inf. 2010;43(1):1‐14.
[41]
Asif M, Martiniano HFMCM, Vicente AM, Couto FM. Identifying disease genes using machine learning and gene functional similarities, assessed through gene ontology. PLOS One. 2018;13(12):e0208626.
[42]
Yuan‐jie L, Jian C. Web service classification based on automatic semantic annotation and ensemble learning. In: Proceedings of the 26th IEEE International Parallel and Distributed Processing Symposium Workshops. Shanghai, China; 2012:2274‐2279.
[43]
Flisar J, Podgorelec V. Document enrichment using DBPedia ontology for short text classification. In: Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics. Novi Sad, Serbia; 2018:8:1‐8:9.
[44]
Ali F, El‐Sappagh S, Kwak D. Fuzzy ontology and LSTM‐based text mining: a transportation network monitoring system for assisting travel. Sensors. 2019;19(2):234.
[45]
Fodeh S, Punch B, Tan P‐N. On ontology‐driven document clustering using core semantic features. Knowl Inf Syst. 2011;28(2):395‐421.
[46]
Miller GA. WordNet: a lexical database for English. Commun ACM. 1995;38(11):39‐41.
[47]
Gutiérrez‐Batista K, Campaña JR, Vila M‐A, Martin‐Bautista MJ. An ontology‐based framework for automatic topic detection in multilingual environments. Int J Intell Syst. 2018;33(7):1459‐1475.
[48]
Song M‐H, Lim S‐Y, Kang D‐J, Lee S‐J. Automatic classification of web pages based on the concept of domain ontology. In: Proceedings of the 12th Asia‐Pacific Software Engineering Conference. Taipei, Taiwan; 2005:645‐651.
[49]
Dar E ul haq, Dorn J. Ontology based classification system for online job offers. In: Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies. Sukkur, Pakistan: IEEE; 2018:1‐8.
[50]
Alkahtani M, Choudhary A, De A, Harding JA. A decision support system based on ontology and data mining to improve design using warranty data. Comput Ind Eng. 2019;128:1027‐1039.
[51]
Khan ZMA, Saeidlou S, Saadat M. Ontology‐based decision tree model for prediction in a manufacturing network. Prod Manuf Res. 2019;7(1):335‐349.
[52]
Vieira J, Antunes C. Decision tree learner in the presence of domain knowledge. In: Proceedings of the Chinese Semantic Web and Web Science Conference. Wuhan, China; 2014:42‐55.
[53]
Wai HPM, Tar PP, Thwe P. Ontology based web page classification system by using enhanced C4.5 and Naïve Bayesian classifiers. In: Proceedings of the 2018 International Conference on Intelligent Informatics and Biomedical Sciences. Bangkok, Thailand; 2018:286‐291.
[54]
White AP, Liu WZ. Technical note: bias in information‐based measures in decision tree induction. Mach Learn. 1994;15(3):321‐329.
[55]
Liu J, Wang W, Yang J. A framework for ontology‐driven subspace clustering. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, Washington, USA; 2004:623‐628.
[56]
Wang H, Azuaje F, Bodenreider O. An ontology‐driven clustering method for supporting gene expression analysis. In: Proceedings of the 18th IEEE Symposium on Computer‐Based Medical Systems. Dublin, Ireland; 2005:389‐394.
[57]
Lin D. An information‐theoretic definition of similarity. In: Proceedings of the 15th International Conference on Machine Learning. Madison, WI, USA; 1998:296‐304.
[58]
Wu Z, Palmer M. Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA, USA; 1994:133‐138.
[59]
Paul AK, Shill PC. Incorporating gene ontology into fuzzy relational clustering of microarray gene expression data. Biosystems. 2018;163:1‐10.
[60]
Xu Z, Sun J. Model‐driven deep‐learning. Natl Sci Rev. 2018;5(1):22‐24.
[61]
Marinica C, Guillet F. Knowledge‐based interactive postmining of association rules using ontologies. IEEE Trans Knowl Data Eng. 2010;22(6):784‐797.
[62]
Mansingh G, Osei‐Bryson K‐M, Reichgelt H. Using ontologies to facilitate post‐processing of association rules by domain experts. Inf Sci. 2011;181(3):419‐434.
[63]
Mohammed M, Azzeddine D, Youssef B, Taoufiq G. SEMMDPREF: algorithm to filter and sort rules using a semantically based ontology technique. In: Proceedings of the 7th International Conference on Management of Computational and Collective Intelligence in Digital Ecosystems. Caraguatatuba, Brazil; 2015:29‐34.
[64]
Resnik P. Semantic similarity in a taxonomy: an information‐based measure and its application to problems of ambiguity in natural language. J Artif Intell Res. 1999;11:95‐130.
[65]
Idoudi R, Ettabaa KS, Solaiman B, Hamrouni K. Ontology knowledge mining based association rules ranking. Procedia Comput Sci. 2016;96:345‐354.
[66]
Caruana G, Li M, Liu Y. An ontology enhanced parallel SVM for scalable spam filter training. Neurocomputing. 2013;108:45‐57.
[67]
Pukkhem N. A semantic‐based approach for representing successful graduate predictive rules. In: Proceedings of the 16th International Conference on Advanced Communication Technology. Pyeongchang, South Korea; 2014:222‐227.
[68]
Damak W, Rebai I, Kallel IK. Semantic object recognition by merging decision tree with object ontology. In: Proceedings of the 1st International Conference on Advanced Technologies for Signal and Image Processing. Sousse, Tunisia; 2014:65‐70.
[69]
Barati M, Bai Q, Liu Q. Mining semantic association rules from RDF data. Knowl‐Based Syst. 2017;133:183‐196.
[70]
Dietrich D, Heller B, Yang B. Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data. Indianapolis, IN, USA: John Wiley & Sons; 2015.
[71]
Siriyasatien P, Chadsuthi S, Jampachaisri K, Kesorn K. Dengue epidemics prediction: a survey of the state‐of‐the‐art based on data science processes. IEEE Access. 2018;6:53757‐53795.
[72]
Hurwitz JS, Nugent A, Halper F, Kaufman M. Big Data for Dummies. Hoboken, NJ: John Wiley & Sons; 2013.
[73]
Liu H, Dou D, Jin R, Lependu P, Shah N. Mining biomedical ontologies and data using RDF hypergraphs. In: Proceedings of the 12th International Conference on Machine Learning and Applications. Miami, FL, USA; 2013:141‐146.
[74]
Chen J, Zaıane OR, Goebel R, Yu PS. Tuplerank: ranking relational databases using random walks on extended k‐partite graphs. Univ Alta Tech Rep. 2009.
[75]
Yazdi ASH, Kahani M. A novel model for mining association rules from semantic web data. In: Proceedings of the Iranian Conference on Intelligent Systems. Bam, Iran; 2014:1‐4.
[76]
Paydar S, Kahani M, Behkamal B, Dadkhah M, Sekhavaty E. Publishing data of Ferdowsi University of Mashhad as linked data. In: Proceedings of the International Conference on Computational Intelligence and Software Engineering. Wuhan, China; 2010:1‐4.
[77]
Fayyad UM, Piatetsky‐Shapiro G, Smyth P. Knowledge discovery and data mining: towards a unifying framework. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, OR, USA; 1996:82‐88.
[78]
Wang Y, Tetko IV, Hall MA, et al. Gene selection from microarray data for cancer classification—a machine learning approach. Comput Biol Chem. 2005;29(1):37‐46.
[79]
Kantardzic M. Data Mining: Concepts, Models, Methods, and Algorithms. 2nd ed. Hoboken, NJ: John Wiley & Sons; 2011.
[80]
Nimmagadda SL, Dreher H, Mora PAC, Lobo A. Ontology based multidimensional data warehousing and mining of heterogeneous unconventional‐reservoir ecosystems. In: Proceedings of the 11th IEEE International Conference on Industrial Informatics. Bochum, Germany: IEEE; 2013:535‐540.
[81]
Schlicker A, Domingues FS, Rahnenführer J, Lengauer T. A new measure for functional similarity of gene products based on gene ontology. BMC Bioinf. 2006;7(1):302.
[82]
Nyunt TT, Shein KP. Sentiment classification based on ontology and SVM classifier. In: Proceedings of the 2nd International Conference on Communication Software and Networks. Singapore, Singapore; 2010:169‐172.
[83]
Uma V, Sankar P, Aghila G. A multilevel semantic document classifier based on SVM integrated with domain ontologies. J Converg Inf Technol. 2008;3(3):59‐69.
[84]
Fan J, Gao Y, Luo H, Jain R. Mining multilevel image semantics via hierarchical classification. IEEE Trans Multimed. 2008;10(2):167‐187.
[85]
Iakovidis DK, Schober D, Boeker M, Schulz S. An ontology of image representations for medical image mining. In: Proceedings of the 9th International Conference on Information Technology and Applications in Biomedicine. Larnaca, Cyprus; 2009:1‐4.
[86]
Chen Y, Deng LY. Event mining and indexing in basketball video. In: Proceedings of the 5th International Conference on Genetic and Evolutionary Computing. Xiamen, China; 2011:247‐251.
[87]
Gene Ontology Consortium . The gene ontology (GO) project in 2006. Nucleic Acids Res. 2006;34(90001):D322‐D326.
[88]
Thasleena NT, Varghese SC. Enhanced associative classification of XML documents supported by semantic concepts. Procedia Comput Sci. 2015;46:194‐201.
[89]
Hotho A, Staab S, Stumme G. Ontologies improve text document clustering. In: Proceedings of the 3rd IEEE International Conference on Data Mining. Melbourne, FL, USA; 2003:541‐544.
[90]
Zhang H, Guo Y, Li Q, et al. An ontology‐guided semantic data integration framework to support integrative data analysis of cancer survival. BMC Med Inf Decis Mak. 2018;18(2):130‐157.
[91]
Ma J, Xu W, Sun Y, Turban E, Wang S, Liu O. An ontology‐based text‐mining method to cluster proposals for research project selection. IEEE Trans Syst Man Cybern—Part Syst Hum. 2012;42(3):784‐790. https://doi.org/10.1109/TSMCA.2011.2172205
[92]
Comito C, Talia D. Energy consumption of data mining algorithms on mobile phones: evaluation and prediction. Pervasive Mob Comput. 2017;42:248‐264.
[93]
Seidenberg J, Rector A. Web ontology segmentation: analysis, classification and use. In: Proceedings of the 15th International Conference on World Wide Web. Edinburgh, Scotland; 2006:13.
[94]
Nejjahi R, Gherabi N, Marzouk A. Towards classification of web ontologies using the horizontal and vertical segmentation. In: Proceedings of the International Conference on Information Technology and Communication Systems. Cham; 2018:70‐81.
[95]
Mohsen W, Aref M, ElBahnasy K. Cooperative domain ontology reduction based on power sets. In: Proceedings of the 2020 the 6th International Conference on Frontiers of Educational Technologies. New York, NY, USA; 2020:196‐203.
[96]
Xu L, Jiang C, Wang J, Yuan J, Ren Y. Information security in big data: privacy and data mining. IEEE Access. 2014;2:1149‐1176.
[97]
Witten IH, Frank E, Hall MA, Pal CJ. Data Mining: Practical Machine Learning Tools and Techniques. Cambridge, MA, USA: Morgan Kaufmann; 2016.
[98]
Nematzadeh A, Pournajaf L. Privacy concerns of semantic web. In: Proceedings of the 5th International Conference on Information Technology: New Generations. Las Vegas, NV, USA; 2008:1272‐1273.
[99]
Mendes R, Vilela JP. Privacy‐preserving data mining: methods, metrics, and applications. IEEE Access. 2017;5:10562‐10582.
[100]
Karlekar NP, Gomathi N. OW‐SVM: ontology and whale optimization‐based support vector machine for privacy‐preserved medical data classification in cloud. Int J Commun Syst. 2018;31(12):e3700.
[101]
Elgendy N, Elragal A. Big data analytics: a literature review paper. In: Proceedings of the 14th Industrial Conference on Advances in Data Mining. St. Petersburg, Russia; 2014:214‐227.
[102]
Wu X, Zhu X, Wu G, Ding W. Data mining with big data. IEEE Trans Knowl Data Eng. 2014;26(1):97‐107.
[103]
Abbes H, Gargouri F. Big data integration: a MongoDB database and modular ontologies based approach. Procedia Comput Sci. 2016;96:446‐455.
[104]
Schulz S, Stenzhorn H, Boeker M, Smith B. Strengths and limitations of formal ontologies in the biomedical domain. Rev Electron Comun Inf Inovacao Em Saude RECIIS. 2009;3(1):31‐45.
[105]
Fudholi DH, Rahayu W, Pardede E, Hendrik. A data‐driven approach toward building dynamic ontology. In: Proceedings of the Information and Communication Technology—EurAsia Conference. Yogyakarta, Indonesia; 2013:223‐232.
[106]
Pittet P, Nicolle C, Cruz C. Guidelines for a dynamic ontology—integrating tools of evolution and versioning in ontology. In: Proceedings of the International Conference on Knowledge Management and Information Sharing. Paris, France; 2011:1‐6.
[107]
Panov P, Džeroski S, Soldatova L. OntoDM: an ontology of data mining. In: Proceedings of the IEEE International Conference on Data Mining Workshops. Pisa, Italy; 2008:752‐760.
[108]
Keet CM, Ławrynowicz A, d'Amato C, et al. The data mining optimization ontology. J Web Semant. 2015;32:43‐53.
[109]
Nural MV, Cotterell ME, Peng H, Xie R, Ma P, Miller JA. Automated predictive big data analytics using ontology based semantics. Int J Big Data. 2015;2(2):43‐56.
[110]
Fan J, Han F, Liu H. Challenges of big data analysis. Natl Sci Rev. 2014;1(2):293‐314.
[111]
Wang J. A new system for distributed machine learning. Natl Sci Rev. 2018;5(3):303‐304.
[112]
Han J, Haihong E, Le G, Du J. Survey on NoSQL database. In: Proceedings of the 6th International Conference on Pervasive Computing and Applications. Port Elizabeth, South Africa: IEEE; 2011:363‐366.
[113]
Hecht R, Jablonski S. NoSQL evaluation: a use case oriented survey. In: Proceedings of the International Conference on Cloud and Service Computing. Hong Kong, China; 2011:336‐341.
[114]
Li B, Chan KCC. A fast big data collection system using MapReduce framework. In: Proceedings of the 3rd International Conference on Cloud Computing and Intelligence Systems. Shenzhen, China; 2014:530‐535.
[115]
Barshandeh S, Piri F, Sangani SR. HMPA: an innovative hybrid multi‐population algorithm based on artificial ecosystem‐based and Harris Hawks optimization algorithms for engineering problems. Eng Comput. 2020:1‐45.
[116]
Barshandeh S, Haghzadeh M. A new hybrid chaotic atom search optimization based on tree‐seed algorithm and Levy flight for solving optimization problems. Eng Comput. 2020:1‐44.
[117]
Kamkhad N, Jampachaisri K, Siriyasatien P, Kesorn K. Toward semantic data imputation for a dengue dataset. Knowl‐Based Syst. 2020;196:105803.
[118]
Sornalakshmi M, Balamurali S, Venkatesulu M, et al. Hybrid method for mining rules based on enhanced Apriori algorithm with sequential minimal optimization in healthcare industry. Neural Comput Appl. 2020. Published online March 31.

Cited By

View all
  • (2024)Semantic Analysis of Vaccine and Online Shopping-Related Stock Forums During the COVID-19 PandemicInternational Journal of Intelligent Systems10.1155/2024/28345442024Online publication date: 1-Jan-2024
  • (2023)Semantic decision TreesAdvanced Engineering Informatics10.1016/j.aei.2023.10215658:COnline publication date: 1-Oct-2023
  • (2022)Forward privacy multikeyword ranked search over encrypted databaseInternational Journal of Intelligent Systems10.1002/int.2288437:10(7356-7378)Online publication date: 7-Apr-2022

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Intelligent Systems
International Journal of Intelligent Systems  Volume 36, Issue 8
August 2021
852 pages
ISSN:0884-8173
DOI:10.1002/int.v36.8
Issue’s Table of Contents

Publisher

John Wiley and Sons Ltd.

United Kingdom

Publication History

Published: 30 June 2021

Author Tags

  1. data analytics
  2. knowledge based
  3. machine learning
  4. ontology
  5. semantic approach

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Semantic Analysis of Vaccine and Online Shopping-Related Stock Forums During the COVID-19 PandemicInternational Journal of Intelligent Systems10.1155/2024/28345442024Online publication date: 1-Jan-2024
  • (2023)Semantic decision TreesAdvanced Engineering Informatics10.1016/j.aei.2023.10215658:COnline publication date: 1-Oct-2023
  • (2022)Forward privacy multikeyword ranked search over encrypted databaseInternational Journal of Intelligent Systems10.1002/int.2288437:10(7356-7378)Online publication date: 7-Apr-2022

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media