Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Using body sensor networks for motion detection: a cluster-based approach for green radio

Published: 01 February 2014 Publication History

Abstract

Body sensor networks BSN are an emerging application that places sensors on the human body. Given that a BSN is typically powered by a battery, one of the most critical challenges is how to prolong the lifetime of all sensor nodes. In addition, there is an increased interest in 'green radio' networks that aim to reduce the energy consumption for wireless communications to cut emissions of CO 2. Recently, using clusters to reduce the energy consumption of BSN has shown promising results. One of the important parameters in these cluster-based algorithms is the selection of cluster heads. Most prior works selected cluster heads either probabilistically or on the basis of nodes' residual energy. In this work, we first discuss the efficiency of cluster-based approaches for saving energy. We then propose a novel cluster head selection algorithm to maximise the lifetime of a BSN for motion detection. Our results show that we can achieve above 90% accuracy for the motion detection, while keeping energy consumption as low as possible. Copyright © 2012 John Wiley & Sons, Ltd.

References

[1]
IEEE 802.15 WPAN Task Group 4 TG4. "http://www.ieee802.org/15/pub/TG4.html".
[2]
Xia F, Xu Z, Yao L, Sun W, Li M. Prediction-based data transmission for energy conservation, In WICON 2010, Xi'An, China, 2010; pp.1-9.
[3]
Xiao S, Dhamdhere A, Sivaraman V, Burdett A. Transmission power control in body area sensor networks for healthcare monitoring. IEEE Journal on Selected Areas in Communications 2009; Volume 27 Issue 1: pp.37-48.
[4]
Park S, Jayaraman S. On innovation: quality of life and technology of bodynets, In ICST BODYNETS 2008, Brussels, Belgium, 2008; pp.1-7.
[5]
Otal B, Alonso L, Verikoukis C. Novel QoS scheduling and energy-saving MAC protocol for body sensor networks optimization, In ICST BODYNETS 2008, Brussels, Belgium, 2008; pp.1-4.
[6]
Lorincz K, Chen BR, Challen GW, Chowdhury AR, Patel S, Bonato P, Welsh M. Mercury: a wearable sensor network platform for high-fidelity motion analysis, In SenSys 2009, New York, USA, 2009; pp.183-196.
[7]
Biswas S, Quwaider M. Body posture identification using hidden Markov model with wearable sensor networks, In BodyNets 2008, Brussels, Belgium, 2008; pp.1-8.
[8]
Ghasemzadeh H, Jafari R. Sport training using body sensor networks: a statistical approach to measure wrist rotation for golf swing, In BodyNets 2009, Brussels, Belgium, 2009; pp.1-8.
[9]
Kwon DY, Gross M. Combining body sensors and visual sensors for motion training, In ACM SIGCHI ACE 2005, Valencia, Spain, 2005; pp.94-101.
[10]
Vlasic D, Adelsberger R, Vannucci G, Barnwell J, Gross M, Matusik W, Popovic J. Practical motion capture in everyday surroundings, In SIGGRAPH 2007, New York, USA, 2007; pp.1-9.
[11]
Huang H, Hu G, Yu F. Energy-aware multipath geographic routing for detouring mode in wireless sensor networks. European Transactions on Telecommunications 2011; Volume 22 Issue 7: pp.375-387.
[12]
Ishmanov F, Malik AS, Kim SW. Energy consumption balancing ECB issues and mechanisms in wireless sensor networks WSNs: a comprehensive overview. European Transactions on Telecommunications 2011; Volume 22 Issue 4: pp.151-167.
[13]
Bravos G, Kanatas AG. Integrating power control with routing to satisfy energy and delay constraints in sensor networks. European Transactions on Telecommunications 2009; Volume 20 Issue 2: pp.233-245.
[14]
Chen YL, Li CP, Wang JW, Wen JH. Performance analysis of multi-step power control algorithm for cellular systems. European Transactions on Telecommunications 2008; Volume 19 Issue 2: pp.193-206.
[15]
Lamprinos IE, Prentza A, Sakka E, Koutsouris D. Energy-efficient MAC protocol for patient personal area networks. Conference proceedings-IEEE Engineering in Medicine and Biology Society 2005; Volume 4: pp.3799-3802.
[16]
Omeni OC, Eljamaly O, Burdett AJ. Energy efficient medium access protocol for wireless medical body area sensor networks, In IEEE-EMBS ISSS-MDBS 2007, Cambridge, UK, 2007; pp.29-32.
[17]
Abbasi A, Youni M. A survey on clustering algorithms for wireless sensor networks. Elsevier Computer Communications 2007; Volume 30: pp.2826-2841.
[18]
Heinzelman W, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless microsensor networks, In IEEE HICSS 2000, Washington, DC, USA, 2000; pp.1-10.
[19]
Ci S, Guizani M, Sharif H. Adaptive clustering in wireless sensor networks by mining sensor energy data. Computer Communications 2007; Volume 30: pp.2968-2975.
[20]
Yan L, Zhong L, Jha H. Energy comparison and optimization of wireless body-area network technologies, In BodyNets 2007, Brussels, Belgium, 2007; pp.1-8.
[21]
Foxlin E, Harrington M, Pfeifer G. Constellation: a wide-range wireless motion-tracking system for augmented reality and virtual set applications, In ACM SIGGRAPH 1998, 1998; pp.371-378.
[22]
Foxlin E, Harrington MC. WearTrack: a self-referenced head and hand tracker for wearable computers and portable VR, In ISWC 2000, Washington, DC, USA, 2000; pp.1-8.
[23]
Smith A, Balakrishnan H, Goraczko M, Priyantha N. Tracking moving devices with the cricket location system, In ACM MobiSys 2004, 2004; pp.190-202.
[24]
Bussman J, Martens W, Tulen J, Schasfoort F, Bergemons HVD, Stam H. Measuring daily behavior using ambulatory accelerometry: the activity monitor. Behavior Research Methods, Instruments & Computers 2001; Volume 33: pp.349-356.
[25]
Mayagoitia R, Nene A, Veltink P. Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. Journal of Biomechanics 2002; Volume 35: pp.537-542.
[26]
Sakaguchi T, Tsutomu K, Katayose H, Sato K, Inokuchi S. Human motion capture by integrating gyroscopes and accelerometers, In IEEE/SICE/RSJ MFI 1996, Washington, DC, USA, 1996; pp.470-475.
[27]
Kirk AG, Obrien JF, Forsyth DA. Skeletal parameter estimation from optical motion capture data, In IEEE CVPR 2005, San Diego, CA, USA, 2005; pp.782-788.
[28]
Kurihara K, Hoshino S, Yamane K, Nakamura Y. Optical motion capture system with pan-tilt camera tracking and realtime data processing, In IEEE ICRA 2002, Vol. Volume 2, Washington, DC, USA, 2002; pp.1241-1248.
[29]
Dorfmüller-Ulhaas K. Robust optical user motion tracking using a kalman filter, In ACM VRST 2003, Osaka, Japan, 2003; pp.1-10.
[30]
Chen Y, Lee J, Parent R, Machiraju R. Markerless monocular motion capture using image features and physical constraints, In CGI 2005, Stony Brook, NY, USA, 2005; pp.36-43.
[31]
Sidenbladh H, Black MJ, Fleet DJ. Stochastic tracking of 3D human figures using 2D image motion, In ECCV 2000, Dublin, Ireland, 2000; pp.702-718.
[32]
Uchinoumi M, Joo KT, Ishikawa S. A simple-structured real-time motion capture system employing silhouette images, In IEEE SMC 2004, The Hague, The Netherlands, 2004; pp.10-13.
[33]
O'brien J, Bodenheimer R, Brostow G, Hodgins J. Automatic joint parameter estimation from magnetic motion capture data, In CGI 2000, Geneva, Switzerland, 2000; pp.53-60.
[34]
Yu S, Allen C, Geng D, Burn D, Brechany U, Bell G, Rowland R. 3-D motion system data-gloves: application for Parkinsons disease. IEEE Transactions on Instrumentation and Measurement 2003; Volume 52: pp.662-674.
[35]
Hoshino K. CGA synthesizer interpolating and extrapolating motion data, In IWEC 2002, Makuhari, Japan, 2002; pp.339-346.
[36]
Roetenberg D, Luinge H, Veltink P. Inertial and magnetic sensing of human movement near ferromagnetic materials, In IEEE ISMAR 2003, Tokyo, Japan, 2003; pp.268-269.
[37]
Nguyen KD, Chen IM, Yeo SH, Duh BL. Motion control of a robotic puppet through a hybrid motion capture device, In IEEE CASE 2007, Scottsdale, Arizona, USA, 2007; pp.753-758.
[38]
Klein G, Drummond T. Tightly integrated sensor fusion for robust visual tracking. Image and Vision Computing 2004; Volume 22: pp.769-776.
[39]
Kawadia V, Kumar P. Power control and clustering in ad hoc networks, In IEEE INFOCOM 2003, San Francisco California, USA, 2003; pp.459-469.
[40]
Narayanaswamy S, Kawadia V, Sreenivas R, Kumar P. Power control in ad-hoc networks: theory, architecture, algorithm and implementation of the COMPOW protocol, In EW 2002, Florence, Italy, 2002; pp.156-162.
[41]
Singh S, Raghavendra C. PAMAS: power aware multi-access protocol with signalling for ad hoc networks. ACM Computer Communication Review 1998; Volume 28 Issue 3: pp.5-26.
[42]
Sohrabi K, Gao J, Ailawadhi V, Pottie GJ. Protocols for self-organization of a wireless sensor network. IEEE Personal Communications Magazine 2000; Volume 7 Issue 5: pp.16-27.
[43]
Haas Z, Tabrizi S. On some challenges and design choices in ad-hoc communications, In IEEE MILCOM 1998, Vol. Volume 1, Boston, Massachusetts, USA, 1998; pp.187-192.
[44]
Ye W, Heidenmann J, Estrin D. An energy-efficient MAC protocol for wireless sensor networks, In Proceedings IEEE INFOCOM, Vol. Volume 3, New York, USA, 2002; pp.1567-1576.
[45]
Benjamin NA, Sankaranarayanan S. Performance of wireless body sensor based mesh network for health application. International Journal of Computer Information Systems and Industrial Management Applications IJCISIM 2010; Volume 2: pp.20-28.
[46]
Razzaque A, Hong CS, Lee S. Data-centric multiobjective QoS-aware routing protocol for body sensor networks. Sensors 2011; Volume 11 Issue 1: pp.917-937.
[47]
Bahanfar S, Darougaran L, Kousha H, Babaie S. Reliable communication in wireless body area sensor network for health monitoring. International Journal of Computer Science Issues 2011; Volume 8 Issue 3: pp.366-372.
[48]
Lindsey S, Raghavendra C. PEGASIS: power efficient gathering in sensor information systems, In IEEE Aerospace Conference 2002, Vol. Volume 3, Big Sky, Montana, USA, 2002; pp.1125-1130.
[49]
Lindsey S, Raghavendra CS, Sivalingam K. Data gathering in sensor networks using the energy*delay metric, In IPDPS WPIM 2001, San Francisco, CA, 2001; pp.2001-2008.
[50]
Bandyopadhyay S, Coyle E. An energy-efficient hierarchical clustering algorithm for wireless sensor networks, In Proceedings IEEE INFOCOM, Vol. Volume 3, San Francisco, California, USA, 2003; pp.1713-1723.
[51]
Younis O, Fahmy S. HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing 2004.
[52]
Manning CD, Schutze H. Foundations of Statistical Natural Language Processing. MIT Press: Cambridge, 1999.
[53]
Liang JJ, Feng YC. Indexing the bit-code and distance for fast KNN search in high-dimensional spaces. Zhejiang University: Science A 2007; Volume 8: pp.857-863.
[54]
Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases, In ACM SIGMOD 1998, Seattle, Washington, 1998; pp.73-84.
[55]
Krishnamachari B, Estrin D, Wicker S. The impact of data aggregation in wireless sensor networks, In IEEE ICDCS 2002 Workshops, Vienna, Austria, 2002; pp.575-578.
[56]
Maddes R, Szewczyk M, Franklin J, Culler D. Supporting aggregate queries over ad-hoc wireless sensor network, In IEEE WMCSA 2002, Washington, DC, USA, 2002; pp.49-58.
[57]
CC2420 Datasheet. "http://focus.ti.com/docs/prod/folders/print/cc2420.html".
[58]
Shnayder V, Hempstead M, Chen BR, Werner-Allen G, Welsh M. Simulating the power consumption of large-scale sensor network applications, In ACM SenSys 2004, New York, NY, USA, 2004; pp.188-200.
[59]
Markov A. Extension of the Limit Theorems of Probability Theory to a Sum of Variables Connected in a Chain, Vol. Volume 1, John Wiley and Sons: Hoboken, 1971. reprinted in Appendix B of R. Howard. Dynamic Probabilistic Systems, Markov Chains.
[60]
Ziv J, Lempel A. Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory 1978; Volume 24: pp.530-536.
[61]
Jacquet P, Szpankowski W, Apostol I. A universal predictor based on pattern matching. IEEE Transactions on Information Theory 2002; Volume 48 Issue 6: pp.1462-1472.
[62]
Taekwondo. ISBN:978-962-14-3583-5, Hong Kong 2007.
[63]
Crowcroft J, Paliwoda K. A multicast transport protocol, In ACM Sigcomm '88, Stanford, CA, USA, 1988; pp.247-256.
[64]
TPR2400 Datasheet. "http://www.willow.co.uk/html/telosb_mote_platform.html".
[65]
Microcontrollers MCU. "http://focus.ti.com/mcu/docs/mcuhome.tsp?sectionId=101".
[66]
Tinyos. "http://www.tinyos.net/".
[67]
Cheng BC, Yeh HH, Hsu PH. Schedulability analysis for hard network lifetime wireless sensor networks with high energy first clustering. IEEE Transactions on Reliability 2011; Volume 60 Issue 3: pp.675-688.
[68]
Ma Y, Aylor J. System lifetime optimization for heterogeneous sensor networks with a hub-spoke technology. IEEE Transactions on Mobile Computing 2004; Volume 3 Issue 3: pp.286-294.
[69]
Madan R, Lall S. Distributed algorithms for maximum lifetime routing in wireless sensor networks. IEEE Transactions on Wireless Communications 2006; Volume 5 Issue 8: pp.2185-2193.
[70]
Wang X, Yin J, Agrawal D. Effects of contention window and packet size on the energy efficiency of wireless local area network, In 2005 IEEE Wireless Communications and Networking Conference, Vol. Volume 1, New Orleans, LA, USA, 2005; pp.94-99.
  1. Using body sensor networks for motion detection: a cluster-based approach for green radio

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Transactions on Emerging Telecommunications Technologies
        Transactions on Emerging Telecommunications Technologies  Volume 25, Issue 2
        February 2014
        138 pages

        Publisher

        John Wiley & Sons, Inc.

        United States

        Publication History

        Published: 01 February 2014

        Author Tags

        1. KNN
        2. body sensor network
        3. energy conservation
        4. motion detection

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 10 Nov 2024

        Other Metrics

        Citations

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media