Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

How is science clicked on Twitter? Click metrics for Bitly short links to scientific publications

Published: 09 June 2021 Publication History

Abstract

To provide some context for the potential engagement behavior of Twitter users around science, this article investigates how Bitly short links to scientific publications embedded in scholarly Twitter mentions are clicked on Twitter. Based on the click metrics of over 1.1 million Bitly short links referring to Web of Science (WoS) publications, our results show that around 49.5% of them were not clicked by Twitter users. For those Bitly short links with clicks from Twitter, the majority of their Twitter clicks accumulated within a short period of time after they were first tweeted. Bitly short links to the publications in the field of Social Sciences and Humanities tend to attract more clicks from Twitter over other subject fields. This article also assesses the extent to which Twitter clicks are correlated with some other impact indicators. Twitter clicks are weakly correlated with scholarly impact indicators (WoS citations and Mendeley readers), but moderately correlated to other Twitter engagement indicators (total retweets and total likes). In light of these results, we highlight the importance of paying more attention to the click metrics of URLs in scholarly Twitter mentions, to improve our understanding about the more effective dissemination and reception of science information on Twitter.

References

[1]
Allen, H. G., Stanton, T. R., Di Pietro, F., & Moseley, G. L. (2013). Social media release increases dissemination of original articles in the clinical pain sciences. PLoS One, 8(7), e68914. https://doi.org/10.1371/journal.pone.0068914
[2]
Alperin, J. P., Gomez, C. J., & Haustein, S. (2019). Identifying diffusion patterns of research articles on twitter: A case study of online engagement with open access articles. Public Understanding of Science, 28(1), 2–18. https://doi.org/10.1177/0963662518761733
[3]
Araujo, R. F. (2020). Communities of attention networks: Introducing qualitative and conversational perspectives for altmetrics. Scientometrics, 124(3), 1793–1809. https://doi.org/10.1007/s11192-020-03566-7
[4]
Bardus, M., El Rassi, R., Chahrour, M., Akl, E. W., Raslan, A. S., Meho, L. I., & Akl, E. A. (2020). The use of social media to increase the impact of health research: Systematic review. Journal of Medical Internet Research, 22(7), e15607. https://doi.org/10.2196/15607
[5]
Bornmann, L. (2015). Alternative metrics in scientometrics: A meta‐analysis of research into three altmetrics. Scientometrics, 103(3), 1123–1144. https://doi.org/10.1007/s11192-015-1565-y
[6]
Bowman, T. D. (2015). Differences in personal and professional tweets of scholars. Aslib Journal of Information Management, 67(3), 356–371. https://doi.org/10.1108/AJIM%C2%AD12%C2%AD2014-0180
[7]
Costas, R., Rijcke, S., & Marres, N. (2020). “Heterogeneous couplings”: Operationalizing network perspectives to study science‐society interactions through social media metrics. Journal of the Association for Information Science and Technology. https://doi.org/10.1002/asi.24427
[8]
Costas, R., Zahedi, Z., & Wouters, P. (2015). Do “altmetrics” correlate with citations? Extensive comparison of altmetric indicators with citations from a multidisciplinary perspective. Journal of the Association for Information Science and Technology, 66(10), 2003–2019. https://doi.org/10.1002/asi.23309
[9]
Díaz‐Faes, A. A., Bowman, T. D., & Costas, R. (2019). Towards a second generation of ‘social media metrics’: Characterizing tTwitter communities of attention around science. PLoS One, 14(5), e0216408. https://doi.org/10.1371/journal.pone.0216408
[10]
Didegah, F., Mejlgaard, N., & Sørensen, M. P. (2018). Investigating the quality of interactions and public engagement around scientific papers on twitter. Journal of Informetrics, 12(3), 960–971. https://doi.org/10.1016/j.joi.2018.08.002
[11]
Fang, Z., & Costas, R. (2020). Studying the accumulation velocity of altmetric data tracked by Altmetric.com. Scientometrics, 123(2), 1077–1101. https://doi.org/10.1007/s11192-020-03405-9
[12]
Fang, Z., Costas, R., Tian, W., Wang, X., & Wouters, P. (2020a). An extensive analysis of the presence of altmetric data for web of science publications across subject fields and research topics. Scientometrics, 124(3), 2519–2549. https://doi.org/10.1007/s11192-020-03564-9
[13]
Fang, Z., Dudek, J., & Costas, R. (2020b). The stability of twitter metrics: A study on unavailable twitter mentions of scientific publications. Journal of the Association for Information Science and Technology, 71(12), 1455–1469. https://doi.org/10.1002/asi.24344
[14]
Friedrich, N., Bowman, T. D., Stock, W. G., & Haustein, S. (2015). Adapting sentiment analysis for tweets linking to scientific papers. Paper presented at the 15th International Society of Scientometrics and Informetrics Conference, Istanbul, Turkey. https://arxiv.org/abs/1507.01967
[15]
Gabielkov, M., Ramachandran, A., Chaintreau, A., & Legout, A. (2016). Social clicks: What and who gets read on twitter?. Paper presented at the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science, Antibes Juan‐les‐Pins, France. https://doi.org/10.1145/2896377.2901462
[16]
Hassan, S.‐U., Saleem, A., Soroya, S. H., Safder, I., Iqbal, S., Jamil, S., … Nawaz, R. (2020). Sentiment analysis of tweets through Altmetrics: A machine learning approach. Journal of Information Science. https://doi.org/10.1177/0165551520930917
[17]
Haunschild, R., Leydesdorff, L., Bornmann, L., Hellsten, I., & Marx, W. (2019). Does the public discuss other topics on climate change than researchers? A comparison of explorative networks based on author keywords and hashtags. Journal of Informetrics, 13(2), 695–707. https://doi.org/10.1016/j.joi.2019.03.008
[18]
Haustein, S. (2019). Scholarly twitter metrics. In W. Glänzel, F. H. Moed, U. Schmoch, & M. Thelwall (Eds.), Springer handbook of science and technology indicators (pp. 729–760). Heidelberg: Springer. https://doi.org/10.1007/978-3-030-02511-3_28
[19]
Haustein, S., Bowman, T. D., & Costas, R. (2016). Interpreting “altmetrics”: Viewing acts on social media through the lens of citation and social theories. In C. R. Sugimoto (Ed.), Theories of Informetrics: A festschrift in honor of Blaise Cronin (pp. 372–405). Berlin: De Gruyter. https://arxiv.org/abs/1502.05701
[20]
Haustein, S., Bowman, T. D., Holmberg, K., Peters, I., & Larivière, V. (2014). Astrophysicists on Twitter: An in‐depth analysis of tweeting and scientific publication behavior. Aslib Journal of Information Management, 66(3), 279–296. https://doi.org/10.1108/AJIM-09-2013-0081
[21]
Haustein, S., Costas, R., & Larivière, V. (2015). Characterizing social media metrics of scholarly papers: The effect of document properties and collaboration patterns. PLoS One, 10(3), e0120495. https://doi.org/10.1371/journal.pone.0120495
[22]
Hellsten, I., & Leydesdorff, L. (2020). Automated analysis of actor–topic networks on twitter: New approaches to the analysis of socio‐semantic networks. Journal of the Association for Information Science and Technology, 71(1), 3–15. https://doi.org/10.1002/asi.24207
[23]
Hern, A. (2020). Twitter aims to limit people sharing articles they have not read. Retrieved from https://www.theguardian.com/technology/2020/jun/11/twitter-aims-to-limit-people-sharing-articles-they-have-not-read.
[24]
Holmström, J., Jonsson, D., Polbratt, F., Nilsson, O., Lundström, L., Ragnarsson, S., Forsberg, A., Andersson, K., & Carlsson, N. (2019). Do we read what we share? Analyzing the click dynamic of news articles shared on twitter. Paper presented at the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2019, Vancouver, Canada. https://doi.org/10.1145/3341161.3342933
[25]
Lyu, X., & Costas, R. (2020). How do academic topics shift across altmetric sources? A case study of the research area of Big Data. Scientometrics, 123(2), 909–943. https://doi.org/10.1007/s11192-020-03415-7
[26]
Pearce, W., Holmberg, K., Hellsten, I., & Nerlich, B. (2014). Climate change on twitter: Topics, communities and conversations about the 2013 IPCC working group 1 report. PLoS One, 9(4), e94785. https://doi.org/10.1371/journal.pone.0094785
[27]
Priem, J., & Costello, K. L. (2010). How and why scholars cite on Twitter. Paper presented at the ASIST 2010 Annual Meeting, Pittsburgh, USA. https://doi.org/10.1002/meet.14504701201
[28]
Ramachandran, A., Wang, L., & Chaintreau, A. (2018). Dynamics and prediction of clicks on news from Twitter. Paper presented at the 29th ACM Conference on Hypertext and Social Media, Baltimore, USA. https://doi.org/10.1145/3209542.3209568
[29]
Robinson‐Garcia, N., Costas, R., Isett, K., Melkers, J., & Hicks, D. (2017). The unbearable emptiness of tweeting—About journal articles. PLoS One, 12(8), e0183551. https://doi.org/10.1371/journal.pone.0183551
[30]
Robinson‐Garcia, N., van Leeuwen, T. N., & Ràfols, I. (2018). Using altmetrics for contextualised mapping of societal impact: From hits to networks. Science and Public Policy, 45(6), 815–826. https://doi.org/10.1093/SCIPOL/SCY024
[31]
Said, A., Bowman, T. D., Abbasi, R. A., Aljohani, N. R., Hassan, S. U., & Nawaz, R. (2019). Mining network‐level properties of Twitter altmetrics data. Scientometrics, 120(1), 217–235. https://doi.org/10.1007/s11192-019-03112-0
[32]
Shu, F., Lou, W., & Haustein, S. (2018). Can Twitter increase the visibility of Chinese publications? Scientometrics, 116(1), 505–519. https://doi.org/10.1007/s11192-018-2732-8
[33]
Shuai, X., Pepe, A., & Bollen, J. (2012). How the scientific community reacts to newly submitted preprints: Article downloads, Twitter mentions, and citations. PLoS One, 7(11), e47523. https://doi.org/10.1371/journal.pone.0047523
[34]
Sugimoto, C. R., Work, S., Larivière, V., & Haustein, S. (2017). Scholarly use of social media and altmetrics: A review of the literature. Journal of the Association for Information Science and Technology, 68(9), 2037–2062. https://doi.org/10.1002/asi.23833
[35]
Thelwall, M., Haustein, S., Larivière, V., & Sugimoto, C. R. (2013). Do altmetrics work? Twitter and ten other social web services. PLoS One, 8(5), e64841. https://doi.org/10.1371/journal.pone.0064841
[36]
Thelwall, M., & Wilson, P. (2016). Mendeley readership altmetrics for medical articles: An analysis of 45 fields. Journal of the Association for Information Science and Technology, 67(8), 1962–1972. https://doi.org/10.1002/asi.23501
[37]
Van Schalkwyk, F., Dudek, J., & Costas, R. (2020). Communities of shared interests and cognitive bridges: The case of the anti‐vaccination movement on Twitter. Scientometrics, 125, 1–18. https://doi.org/10.1007/s11192-020-03551-0
[38]
Waltman, L., & Van Eck, N. J. (2012). A new methodology for constructing a publication‐level classification system of science. Journal of the American Society for Information Science and Technology, 63(12), 2378–2392. https://doi.org/10.1002/asi.22748
[39]
Wang, L. X., Ramachandran, A., & Chaintreau, A. (2016). Measuring click and share dynamics on social media: A reproducible and validated approach. Paper presented at the Workshops of the Tenth International AAAI Conference on Web and Social Media, Cologne, Germany. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13213
[40]
Wang, X., Cui, Y., Li, Q., & Guo, X. (2017). Social media attention increases article visits: An investigation on article‐level referral data of PeerJ. Frontiers in Research Metrics and Analytics, 2, 11. https://doi.org/10.3389/frma.2017.00011
[41]
Wang, X., Fang, Z., & Guo, X. (2016). Tracking the digital footprints to scholarly articles from social media. Scientometrics, 109(2), 1365–1376. https://doi.org/10.1007/s11192-016-2086-z
[42]
Weller, K., & Puschmann, C. (2011). Twitter for scientific communication: How can citations/references be identified and measured? Paper presented at the 3rd ACM International Conference on Web Science (WebSci ‘11), Koblenz, Germany. https://websci11.org/fileadmin/websci/Posters/153_paper.pdf
[43]
Yu, H., Xiao, T., Xu, S., & Wang, Y. (2019). Who posts scientific tweets? An investigation into the productivity, locations, and identities of scientific tweeters. Journal of Informetrics, 13(3), 841–855. https://doi.org/10.1016/j.joi.2019.08.001
[44]
Yu, H., Xu, S., Xiao, T., Hemminger, B. M., & Yang, S. (2017). Global science discussed in local altmetrics: Weibo and its comparison with Twitter. Journal of Informetrics, 11(2), 466–482. https://doi.org/10.1016/j.joi.2017.02.011
[45]
Zahedi, Z., & Costas, R. (2018). General discussion of data quality challenges in social media metrics: Extensive comparison of four major altmetric data aggregators. PLoS One, 13(5), e0197326. https://doi.org/10.1371/journal.pone.0197326
[46]
Zahedi, Z., Costas, R., & Wouters, P. (2014). How well developed are altmetrics? A cross‐disciplinary analysis of the presence of ‘alternative metrics’ in scientific publications. Scientometrics, 101(2), 1491–1513. https://doi.org/10.1007/s11192-014-1264-0

Cited By

View all
  • (2024)Mitigating Barriers to Public Social Interaction with Meronymous CommunicationProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642241(1-26)Online publication date: 11-May-2024
  • (2024)The many publics of science: using altmetrics to identify common communication channels by scientific fieldScientometrics10.1007/s11192-024-05077-1129:7(3705-3723)Online publication date: 1-Jul-2024
  • (2024)A multi-dimensional analysis of usage counts, Mendeley readership, and citations for journal and conference papersScientometrics10.1007/s11192-023-04909-w129:2(985-1013)Online publication date: 1-Feb-2024
  • Show More Cited By

Index Terms

  1. How is science clicked on Twitter? Click metrics for Bitly short links to scientific publications
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Journal of the Association for Information Science and Technology
            Journal of the Association for Information Science and Technology  Volume 72, Issue 7
            July 2021
            153 pages
            ISSN:2330-1635
            EISSN:2330-1643
            DOI:10.1002/asi.v72.7
            Issue’s Table of Contents
            This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

            Publisher

            John Wiley & Sons, Inc.

            United States

            Publication History

            Published: 09 June 2021

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 01 Mar 2025

            Other Metrics

            Citations

            Cited By

            View all
            • (2024)Mitigating Barriers to Public Social Interaction with Meronymous CommunicationProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642241(1-26)Online publication date: 11-May-2024
            • (2024)The many publics of science: using altmetrics to identify common communication channels by scientific fieldScientometrics10.1007/s11192-024-05077-1129:7(3705-3723)Online publication date: 1-Jul-2024
            • (2024)A multi-dimensional analysis of usage counts, Mendeley readership, and citations for journal and conference papersScientometrics10.1007/s11192-023-04909-w129:2(985-1013)Online publication date: 1-Feb-2024
            • (2024)How do tweeters feel about scientific misinformation: an infoveillance sentiment analysis of tweets on retraction notices and retracted papersScientometrics10.1007/s11192-023-04871-7129:1(261-287)Online publication date: 1-Jan-2024
            • (2023)How do scientific papers from different journal tiers gain attention on social media?Information Processing and Management: an International Journal10.1016/j.ipm.2022.10315260:1Online publication date: 1-Jan-2023
            • (2022)From Who You Know to What You Read: Augmenting Scientific Recommendations with Implicit Social NetworksProceedings of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491102.3517470(1-23)Online publication date: 29-Apr-2022
            • (2022)Are patents linked on Twitter? A case study of Google patentsScientometrics10.1007/s11192-022-04519-y127:11(6339-6362)Online publication date: 1-Nov-2022
            • (2022)User engagement with scholarly tweets of scientific papers: a large-scale and cross-disciplinary analysisScientometrics10.1007/s11192-022-04468-6127:8(4523-4546)Online publication date: 1-Aug-2022

            View Options

            View options

            Figures

            Tables

            Media

            Share

            Share

            Share this Publication link

            Share on social media