Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-662-53536-3_17guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Parameterized Complexity of the MINCCA Problem on Graphs of Bounded Decomposability

Published: 22 June 2016 Publication History

Abstract

In an edge-colored graph, the cost incurred at a vertex on a path when two incident edges with different colors are traversed is called reload or changeover cost. The Minimum Changeover Cost Arborescence$$\textsc {MinCCA}$$ problem consists in finding an arborescence with a given root vertex such that the total changeover cost of the internal vertices is minimized. It has been recently proved by Gözüpek et al.ï ź[14] that the $$\textsc {MinCCA}$$ problem is $$\mathsf{FPT}$$ when parameterized by the treewidth and the maximum degree of the input graph. In this article we present the following results for $$\textsc {MinCCA}$$:the problem is W[1]-hard parameterized by the treedepth of the input graph, even on graphs of average degree at most 8. In particular, it is W[1]-hard parameterized by the treewidth of the input graph, which answers the main open problem ofï ź[14];it is W[1]-hard on multigraphs parameterized by the tree-cutwidth of the input multigraph;it is $$\mathsf{FPT}$$ parameterized by the star tree-cutwidth of the input graph, which is a slightly restricted version of tree-cutwidth. This result strictly generalizes the $$\mathsf{FPT}$$ result given inï ź[14];it remains NP-hard on planar graphs even when restricted to instances with at most 6 colors and 0/1 symmetric costs, or when restricted to instances with at most 8 colors, maximum degree bounded by 4, and 0/1 symmetric costs.

References

[1]
Amaldi, E., Galbiati, G., Maffioli, F.: On minimum reload cost paths, tours, and flows. Networks 573, 254---260 2011
[2]
Arkoulis, S., Anifantis, E., Karyotis, V., Papavassiliou, S., Mitrou, N.: On the optimal, fair and channel-aware cognitive radio network reconfiguration. Comput. Netw. 578, 1739---1757 2013
[3]
Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Switzerland 2015
[4]
de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput. Geom. Appl. 223, 187---206 2012
[5]
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London 2013
[6]
Çelenlioğlu, M. R., Gözüpek, D., Mantar, H. A.: A survey on the energy efficiency of vertical handover mechanisms. In: Proceedings of the International Conference on Wireless and Mobile Networks WiMoN 2013
[7]
Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. Springer, Heidelberg 2006
[8]
Galbiati, G.: The complexity of a minimum reload cost diameter problem. Discrete Appl. Math. 15618, 3494---3497 2008
[9]
Galbiati, G., Gualandi, S., Maffioli, F.: On minimum changeover cost arborescences. In: Pardalos, P.M., Rebennack, S. eds. SEA 2011. LNCS, vol. 6630, pp. 112---123. Springer, Heidelberg 2011
[10]
Galbiati, G., Gualandi, S., Maffioli, F.: On minimum reload cost cycle cover. Discrete Appl. Math. 164, 112---120 2014
[11]
Ganian, R., Kim, E.J., Szeider, S.: Algorithmic applications of tree-cut width. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. eds. MFCS 2015. LNCS, vol. 9235, pp. 348---360. Springer, Heidelberg 2015
[12]
Gourvès, L., Lyra, A., Martinhon, C., Monnot, J.: The minimum reload s-t path, trail and walk problems. Discrete Appl. Math. 15813, 1404---1417 2010
[13]
Gozupek, D., Buhari, S., Alagoz, F.: A spectrum switching delay-aware scheduling algorithm for centralized cognitive radio networks. IEEE Trans. Mobile Comput. 127, 1270---1280 2013
[14]
Gözüpek, D., Shachnai, H., Shalom, M., Zaks, S.: Constructing minimum changeover cost arborescenses in bounded treewidth graphs. Theorerical Comput. Sci. 621, 22---36 2016
[15]
Gözüpek, D., Shalom, M., Voloshin, A., Zaks, S.: On the complexity of constructing minimum changeover cost arborescences. Theorerical Comput. Sci. 540, 40---52 2014
[16]
Kim, E., Oum, S., Paul, C., Sau, I., Thilikos, D.M.: An FPT 2-approximation for tree-cut decomposition. In: Sanití, L., et al. eds. WAOA 2015. LNCS, vol. 9499, pp. 35---46. Springer, Heidelberg 2015.
[17]
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms, vol. 31. Oxford University Press, Oxford 2006
[18]
Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci. 674, 757---771 2003
[19]
Wirth, H.-C., Steffan, J.: Reload cost problems: minimum diameter spanning tree. Discrete Appl. Math. 1131, 73---85 2001
[20]
Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Comb. Theor. Ser. B 110, 47---66 2015
  1. Parameterized Complexity of the MINCCA Problem on Graphs of Bounded Decomposability

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Guide Proceedings
      WG 2016: Revised Selected Papers of the 42nd International Workshop on Graph-Theoretic Concepts in Computer Science - Volume 9941
      June 2016
      306 pages
      ISBN:9783662535356

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 22 June 2016

      Author Tags

      1. $$\mathsf{FPT}$$ algorithm
      2. Dynamic programming
      3. Minimum Changeover Cost Arborescence
      4. Parameterized complexity
      5. Planar graph
      6. Treewidth

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 18 Feb 2025

      Other Metrics

      Citations

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media